
 057-317 ISSUE:1

DEEP SEA ELECTRONICS
DSEM812 Qt Manual

Document Number: 057-319

Author: Anthony Manton

DSEM812 Qt Manual

057-317 ISSUE: 1 Page 2 of 36

Deep Sea Electronics Ltd
Highfield House
Hunmanby
North Yorkshire
YO14 0PH
ENGLAND

Sales Tel: +44 (0) 1723 890099

E-mail: sales@deepseaelectronics.com
Website: www.deepseaelectronics.com

DSEM812 Qt Manual

© Deep Sea Electronics Ltd.
All rights reserved. No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means or other) without the written permission of
the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents
Act 1988.
Applications for the copyright holder’s written permission to reproduce any part of this publication
must be addressed to Deep Sea Electronics Ltd at the address above.

The DSE logo and the name DSEControl® are UK registered trademarks of Deep Sea Electronics Ltd.

Any reference to trademarked product names used within this publication is owned by their respective
companies.

Deep Sea Electronics Ltd reserves the right to change the contents of this document without prior
notice.

Revision History

Issue No. Comments

1 First Release

DSEM812 Qt Manual

 Page 3 of 36 057-317 ISSUE: 0

TABLE OF CONTENTS

Section Page

1 Introduction .. ERROR! BOOKMARK NOT DEFINED.
1.1 CLARIFICATION OF NOTATION .. 5
1.2 GLOSSARY OF TERMS ... 5
1.3 RELATED INFORMATION .. 6

1.3.1 TECHNICAL INFORMATION .. 6
1.4 SAFETY INSTRUCTIONS ... 7

1.4.1 GENERAL .. 7
1.4.2 INSTALLATION NOTES ... 7

2 QT, C++ AND QML .. 8
2.1 PROPERTIES, SIGNALS AND SLOTS ... 8

2.1.1 SIGNALS .. 9
2.1.1.1 PROPERTY DEFINITION .. 9
2.1.1.2 SIGNAL DEFINITION .. 9
2.1.1.3 SIGNAL USAGE .. 9

2.1.2 SLOTS ... 10
2.1.2.1 PROPERTY DEFINITION .. 10
2.1.2.2 SLOT DEFINITION .. 10
2.1.2.3 SLOT METHOD ... 11

3 INSTALLING THE QT ENVIRONMENT .. 12
3.1 PACKAGE INSTALL ... 12

3.1.1 CREATING THE MACHINE .. 12
3.1.2 CREATING A SHARED FOLDER ... 14
3.1.3 INSTALLING THE PACKAGE ... 16
3.1.4 CHECKING THE KIT .. 17

4 CONNECTING TO QT ... 21
4.1 FILE SYSTEM PATH .. 21
4.2 CHECKING CONNECTION TO THE DEVICE ... 21
4.3 START NEW PROJECT .. 23
4.4 I/O ... 27
4.5 CAN .. 27

4.5.1 PROCEDURE TO CONNECT TO THE CAN ... 27
4.6 GPS .. 28
4.7 DEPLOYING THE APPLICATION TO THE DEVICE ... 28

4.7.1 ERROR CHECKING ... 28
4.7.2 DEPLOY APPLICATION ... 29

4.8 SELECTING AN APPLICATION TO AUTO RUN .. 30
4.9 CEASING (KILLING) A RUNNING APPLICATION.. 33

5 MAINTENANCE AND WARRANTY .. 34

6 DISPOSAL ... 34
6.1 WEEE (WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT) 34

7 MISC .. 34

Introduction

057-317 ISSUE: 1 Page 4 of 36

1 INTRODUCTION

This document details the operation and setup requirements of the DSEM812 Qt Controller and
Display, part of the DSEControl® range of products.

DSEM812 CODESYS variants are not covered in this document and are detailed within DSE
Publication 057-318 DSEM812 CODESYS Manual.

Hardware, Specifications, Settings Pages and Installation Notes for all DSEM812 variants are detailed
within DSE Publication 057-317 DSEM812 Operator Manual.

Knowledge of Linux and Qt (QML, C++ and JavaScript) is essential and assumed. This manual
instructs the Qt programmer how to use Qt in conjunction with the DSE device. This manual does not
give instruction for Linux, Qt, QML, C++ or JavaScript.

The manual forms part of the product and should be kept for the entire life of the product. If the
product is passed or supplied to another party, ensure that this document is passed to them for
reference purposes.
This is not a controlled document. DSE do not automatically inform on updates. Any future updates of
this document are included on the DSE website at www.deepseaelectronics.com

Observe the operating instructions. Non-observance of the instructions, operation not in accordance
with use as prescribed below, wrong installation or incorrect handling seriously affects the safety of
the product, operators and machinery.

A robust metal case designed for chassis mounting houses the module. Connections are via locking
plug and sockets.

The controller is supplied with no application program. The equipment manufacturer is responsible for
creating and managing the application program and installing it in the controller. This is achieved
using Qt programming. Contact DSE Technical Support for further details.

Qt is an application development framework for Linux Embedded systems.
Qt is not a programming language on its own. It is a framework written in C++ using signals and slots
to pass information to/from Qt Modelling Language files (QML).

Introduction

 Page 5 of 36 057-317 ISSUE: 0

1.1 CLARIFICATION OF NOTATION

Clarification of notation used within this publication.

NOTE:

Highlights an essential element of a procedure to ensure correctness.

CAUTION!

Indicates a procedure or practice, which, if not strictly observed, could
result in damage or destruction of equipment.

WARNING!

Indicates a procedure or practice, which could result in injury to
personnel or loss of life if not followed correctly.

1.2 GLOSSARY OF TERMS

Term Description

Application The application is the program that allows the DSEM812 to control the
machine it is connected to.
The Application within the DSEM812 is designed and provided by the
manufacturer of the complete machine.

Bootloader The Bootloader is the program within the DSEM812 responsible for loading
the Operating System.

C++ Programming language used alongside QML to create the complete
application program.

CAN Control Area Network. A high-speed data transmission system used
extensively within the Automotive and Off-Highway industries.

Deploy The compiled application is ‘deployed’ to the device folder /home/m812

ECU Electronic Control Unit. For example, the DSEM812 device.

Firmware The Firmware of the DSEM812 is the Operating System of the DSEM812
that reads and executes the Application program.

FSD Full Scale Deflection. For example, 0 mA to 20 mA is the Full Scale
Deflection of a current sink input.

I/O
Input / Output. For example, “The I/O is taken out to an external terminal
strip in the user panel”.

IDE
Integrated Development Environment. For example, the Qt application that
runs on the host PC is an IDE, containing code editors, compilers and
much more.

Ixyyy
An Input, where x is the connector and yyy is the input number. For
example, IB003 means Input 3 on Connector B.

Nano An editor to allow text files to be altered.

PLC Programmable Logic Controller. Industrial computer used primarily for the
automation of electromechanical machinery.

PWM
PWMi

A digital signal is used to represent an analogue value by using Pulse
Width Modulation. The mark-space ratio of a square wave changes to
represent the value.
Used for many control applications including proportional valves.
PWM= Voltage control.
PWMi = Current control.

Off-Highway An industrial vehicle used primarily “off road”. For example construction
and farm machinery. A wider interpretation includes on road access
platforms, emergency vehicles and other industrial machinery, used either
on the road, or off road.

Pin A male or female pin connection in a housing (plug or socket).

Introduction

057-317 ISSUE: 1 Page 6 of 36

QML Qt Modelling Language. Used to design/describe the display elements on
the DSEM812 Qt variant.

Qt Application development system supported by DSEM812 Qt Variant
Pronounced ‘Cute’.

Qxyyy An Output, where x is the connector and yyy is the output number. For
example QB002 means Output 2 on Connector B.

Remote Shell A terminal to allow commands to be run on the target device.

Run.sh Shell program executed at device boot time. Among other functions, this
file instructs the device which application to execute at boot of the device.

1.3 RELATED INFORMATION

This document refers to and is referred by the following DSE publications which are obtained from the
DSE website: www.deepseaelectronics.com or by contacting DSE technical support: support@
deepseaelectronics.com.

1.3.1 TECHNICAL INFORMATION

DSE Part Description

055-267 DSEM812 Datasheet

057-317 DSEM812 Operator Manual

Introduction

 Page 7 of 36 057-317 ISSUE: 0

1.4 SAFETY INSTRUCTIONS

1.4.1 GENERAL

• These instructions are for authorised persons according to the EMC and low-voltage directives.
The device must be installed, connected and put into operation by a qualified electrician.

• It is not permissible to open the controller or to modify or repair the controller. Modification or
repairs to the wiring could result in dangerous malfunctions. Repairs to the controller must be
performed by DSE. Contact your original equipment supplier in the case of malfunction.

• When the device is unpowered, ensure that no connection pins are connected to a voltage
source. Thus, when the supply is switched off, the supply for the electronics, the power outputs
and the external sensor supply must be switched off together.

• The controller heatsink at the rear heats up beyond normal ambient temperature during
operation. To avoid danger caused by high temperatures, protect against contact.

• The customer is responsible for performing risk analysis of the mobile working machine and
determining the possible safety related functions. The user is responsible for the safe function of
the application programs created. If necessary, they must additionally carry out an approval test
by corresponding supervisory and test organisations according to the national regulations.

• All connectors must be unplugged from the electronics during electrical welding and painting
operations.

1.4.2 INSTALLATION NOTES

• Follow the instructions of the connector manufacturer, specifically with respect to preventing
water from entering the device. See Section entitled Cables, Connectors, Harnesses and Spare
Parts for details of DSE Part Numbers.

• To maintain IP67 rating where connectors have unused pins, ensure the use of a suitable
Blanking Insert. In the case of a completely unused connector, the plug must be inserted, fully
populated with Pin Blanking Inserts. See Section entitled Cables, Connectors, Harnesses and
Spare Parts for details.

• M12 protection plugs (supplied) must be installed in both the USB and Ethernet interfaces to
ensure IP67 rating when the connectors are not in use. Tighten to 0.8 Nm (0.6 lbf ft). Where IP
protection is required when the interfaces are in use, suitable O-rings must be fitted.

• The heatsink must be wired to vehicle ground to comply with EMC guidelines. A screw
connection point is provided for this purpose. A metallic screw must be used to create an
electrical connection to vehicle / machine ground.

Qt, C++ and QML

057-317 ISSUE: 1 Page 8 of 36

2 QT, C++ AND QML

NOTE: Knowledge of Linux and Qt (QML, C++ and JavaScript) is essential and assumed.
This manual instructs the Qt programmer how to use Qt in conjunction with the DSE device.
This manual does not give instruction for Linux, Qt, QML, C++ or JavaScript.

Qt (pronounced ‘Cute’) is an application development system used by the Linux based DSEM812
devices. C++, QML and JavaScript are used to program the device.

QML is Qt Modelling Language, a mark-up language designed to aid development of user interfaces.
QML elements support JavaScript both inline and via included .js files.

QML is used to describe only the user interface. Where interaction with device hardware is required,
Integration with C++ is used.

Qt allows the use of externally programmed libraries to ‘extend’ the functionality of the system. This
includes the use of DSE supplied libraries to allow for example, the use of the device I/O.

C++ and QML work together to provide the full functionality of Qt.

2.1 PROPERTIES, SIGNALS AND SLOTS

Properties, Signals and Slots are the mechanism that binds together C++ and QML. C++ classes
derived from QObject or a subclass are registered to allow them to be created as objects within QML.

• Properties are values associated with the object. QML reads and/or writes from/to the
properties. For example, a property of a class used to monitor the inputs of the device may be
read by the QML to know the voltage applied to the input.

• Signals are emitted by the C++ class upon specific actions occurring within the class.
Typically, a signal is emitted when a property value is changed in the C++ class. For example,
if a device input monitored by the C++ class changes value, a signal is sent to inform the
QML that the input has changed. Signal Handlers are used in the QML to act upon signals
from the C++.

• A slot is a method of the class called when the property is changed by the QML. For example,
if the QML changes a property linked to the state of a device output, the C++ class detects
the change and calls the slot method that handles the setting of the class variable. In turn this
may also trigger a signal as the linked property has also changed.

Examples of properties, signals and slots are given in the following subsections.

Signal

C++ QML and JavaScript

Slot

Property

Qt, C++ and QML

 Page 9 of 36 057-317 ISSUE: 0

2.1.1 SIGNALS

QObject Signals are emitted from C++ and typically used to trigger callback functions in the QML
JavaScript.

Signals are emitted by an object when it is required to inform about a change in the object. The Emit
keyword is used to do this.

Good practice dictates that a signal is used to indicate any properties that have changed.

2.1.1.1 PROPERTY DEFINITION

Within the class .h file a Q_PROPERTY is defined. In this example the property is read-only by the
QML due to the omission of a WRITE slot definition. For details of this, see section entitled Slot
Definition elsewhere in this document.

Parameter Description

MEMBER Defines the class variable that is used to link to the QML object
property. Such class variables are prefixed ‘m’ to indicate MEMBER.

NOTIFY Defines the signal emitted upon change of the property. The signal
must be prototyped in the .h file but does not required an associated
method creating in the .cpp file. The signal is automatically emitted
upon change of the property.

2.1.1.2 SIGNAL DEFINITION

Within the class .h file:

2.1.1.3 SIGNAL USAGE

To receive a notification when a signal is emitted for an object, the object definition includes a signal
handler named on <Signal>, where <Signal> is the name of the signal, with the first letter capitalised.
The signal handler contains JavaScript code executed when the signal handler is triggered.

Name and type of the
property as presented
to QML

Definition of the signal method within class .h.
In this case the value of raw is passed as a
parameter of the function.

Definition of the signal handler
within a .qml file
In this case the value of raw is
passed as a parameter of the
function.

Qt, C++ and QML

057-317 ISSUE: 1 Page 10 of 36

2.1.2 SLOTS

QObject Slots are C++ methods that allow them to be called upon the change of a property.

The class .h file defines the C++ class a derived from QObject and defines methods as public slots to
make them accessible to QML.

2.1.2.1 PROPERTY DEFINITION

Within the class .h file a Q_PROPERTY is defined. In this example the property is read/Write.

Parameter Description

MEMBER Defines the class variable that is used to link to the QML object
property. Such class variables are prefixed ‘m’ to indicate member.

WRITE Defines the name of a method called when QML changes the value
of the property. This is used to control access to the class variable.
Typical application of the slot method is to check if the property value
has changed, validate the new property value, update the class
member variable with the new property value and finally emit a
signal to inform QML of the change.

NOTIFY Defines the signal emitted upon change of the property. The signal
must be prototyped in the .h file but does not required an associated
method creating in the .cpp file. The signal is automatically emitted
upon change of the property.

2.1.2.2 SLOT DEFINITION

Within the class .h file:

Name and type of the
property as presented
to QML

Definition of the slot method within class .h. In this
example a pointer to the property is passed into
the slot method. This is used to update the class
variable.

Qt, C++ and QML

 Page 11 of 36 057-317 ISSUE: 0

2.1.2.3 SLOT METHOD

In this example, a device output is controlled, based upon the value of the property pointed to in the
method call.

• The output is set to the state requested by the QML property state.

• If the property value of state has changed (if it is not the same as the class variable mState)
then the class variable is updated and the signal stateChanged is emitted, passing the
updated value along with the signal.

Installing the Qt Environment

057-317 ISSUE: 1 Page 12 of 36

3 INSTALLING THE QT ENVIRONMENT

NOTE: DSEvm.zip containing the Virtual Disk Image is available from
support@deepseaelectronics.com.

Extract the VDI (Virtual Disk Image) from the containing zip file. The extracted image is over 6 GB.
The VDI is designed to be used by Oracle VM VirtualBox PC software and provides a Ubuntu
operating system with Qt 5.1 preinstalled and configured for use with DSEM812.

VirtualBox is available from https://www.virtualbox.org/wiki/Downloads

3.1 PACKAGE INSTALL
Install VirtualBox. A new machine needs to be created with the supplied virtual disk image.

3.1.1 CREATING THE MACHINE

First select New

https://www.virtualbox.org/wiki/Downloads

Installing the Qt Environment

 Page 13 of 36 057-317 ISSUE: 0

Then enter a name, select a folder and select Linux, Ubuntu (64-bit):

Then select Next, use a minimum of 1GB of memory.

Select Next and choose “Use an existing virtual disk file” and select the supplied virtual disk image:

Installing the Qt Environment

057-317 ISSUE: 1 Page 14 of 36

Then select Add:

Then select the supplied virtual disk image and select Create.

3.1.2 CREATING A SHARED FOLDER

Once the Virtual Machine has been created, a shared folder needs to be created to transfer the Qt
package on to the virtual machine. First, select the machine and select Settings:

Select Add

Select the Machine in the left,
then select Settings

Installing the Qt Environment

 Page 15 of 36 057-317 ISSUE: 0

Select the folder path to the supplied Qt package. Use “Shared” for the Folder Name:

Start the Virtual Machine and ensure the shared folder is accessible. Start the machine, allowing it to
boot to the desktop, then install Guest Additions by selecting “Install Guest Additions CD Image”:

Select Shared Folders

Then click Add

Installing the Qt Environment

057-317 ISSUE: 1 Page 16 of 36

Wait for it to install, then reboot the virtual machine. Then, open a terminal (Ctrl+Alt+T) and type

sudo cp /home/user/shared/m812_qt_package.tar.gz /home/user/Desktop/; sudo
chown user:user /home/user/Desktop/m812_qt_package.tar.gz

The password for the user account is password. The package is now available on the desktop to
extract.

3.1.3 INSTALLING THE PACKAGE

Once the package is on the Desktop, it is ready to install. Double click it and extract it on the desktop.
Open a terminal on the Desktop (Ctrl+Alt+T) and run the command

cd ~/Desktop; ./install.sh

If prompted for a password, enter password. The virtual machine is now ready to compile and
program for the chosen device (DSEM812).

Installing the Qt Environment

 Page 17 of 36 057-317 ISSUE: 0

3.1.4 CHECKING THE KIT

Open Qt Creator:

Then select File, Open File or Project:

Installing the Qt Environment

057-317 ISSUE: 1 Page 18 of 36

Choose an example from the Examples directory on the Desktop. Qt projects have the extension .pro.
In this case, the Examples/Touchscreen/Touchscreen.pro was selected:

Select M812 in the Build & Run section on the left:

Installing the Qt Environment

 Page 19 of 36 057-317 ISSUE: 0

Select the build button (hammer) in the bottom left:

If the build succeeds with no errors, you should have the following if opening the “Compile Output”
window:

Installing the Qt Environment

057-317 ISSUE: 1 Page 20 of 36

This project is now ready to download. Select the Run icon at the bottom left:

If the program starts on the M812, the kit is correct. This is assuming the M812 is connected to the
same network as the virtual machine and the M812 has the IP address of 192.168.1.100.

If the M812 has a different IP address, see section entitled Checking Connection to the Device
elsewhere in this document.

Connecting to Qt

 Page 21 of 36 057-317 ISSUE: 0

4 CONNECTING TO QT

NOTE: Prepare the Qt installation before following this section. See previous section
entitled Installing the Qt Environment elsewhere in this document.

NOTE: Knowledge of Linux and Qt (QML, C++ and JavaScript) is essential and assumed.
This manual instructs the Qt programmer how to use Qt in conjunction with the DSE device.
This manual does not give instruction for Linux, Qt, QML, C++ or JavaScript.
Comprehensive online documentation for Qt is provided at https://doc.qt.io/qt-5/

DSEM812 Qt variant communicates with, and is programmed by, the Qt Integrated Development
Environment (IDE). Online documentation for the IDE is available at https://doc.qt.io/qtcreator/

4.1 FILE SYSTEM PATH

Path Description

/home/m812 Working folder for all user operations.
Contains Run.sh (boot time setup) and all applications that have been
deployed to the device.

4.2 CHECKING CONNECTION TO THE DEVICE

First use the device Settings Pages to configure the ethernet port as required. Full instructions how to
enter and utilise the Settings Pages are contained in DSE Publication 057-317 DSEM812 Operator
Manual.

NOTE: Changing settings other than those detailed may cause unexpected errors.

Then select Devices.

Within Qt select
Tools | Options.

https://doc.qt.io/qt-5/
https://doc.qt.io/qtcreator/

Connecting to Qt

057-317 ISSUE: 1 Page 22 of 36

NOTE: Changing settings other than those detailed may cause unexpected errors.

Ensure M812 is selected

And enter the IP address
of the device on your
network.

Click Test to check the settings and test the
connections to the device.

The results of a successful test.
Click Close to continue

Connecting to Qt

 Page 23 of 36 057-317 ISSUE: 0

4.3 START NEW PROJECT

To begin, start a new project as shown.

Select File | New File or Project

Select Application

Then select Qt Quick Application - Empty

Click Choose to continue

Enter your project Name

And the location where the project is to
be stored on your PC.

Click Next to continue

Click Next to continue

Ensure qmake is selected

Connecting to Qt

057-317 ISSUE: 1 Page 24 of 36

NOTE: DSEM812 is compatible with Qt 5.11. Selection of an incorrect Minimal required Qt
version may render project creation impossible.

Ensure Qt 5.11 is selected. This is the Qt
version supported by the device.

Ensure M812 is selected.
If this is not correct, click Back and recheck
Minimal Qt Version is set to Qt 5.11.

Summary of the project
location and files to be
created.

Click Finish to continue

Connecting to Qt

 Page 25 of 36 057-317 ISSUE: 0

The new project is created with a simple Window.

However, we will modify this to provide a simple application to show something on the screen.

Change width and height to suite the
device’s maximum screen size.

Add a text element

parent.width is the
width of Window (the
parent of Text)
width is the width of
Text.
(parent.width – width)/2
places the text centrally
within Window.

Y:0 places the top of Text at the
top of its parent (Window).

Double-Click on the .pro
(project) file n the Projects
window.

Change the target.path to ‘.’

Connecting to Qt

057-317 ISSUE: 1 Page 26 of 36

Deploy the application as described in the section entitled Deploying the Application to the Device
elsewhere in this document.

Results of the application running on the device:

Connecting to Qt

 Page 27 of 36 057-317 ISSUE: 0

4.4 I/O

Device I/O is controlled and read using dseio library.
Add the library to LIBS within the .pro project file.

Include to any .h or .cpp files that use the library.

Then initialised the library before use within main.cpp.

NOTE: For full details, see Examples\Inputs and Examples\Outputs provided in the
DSEM812 Qt package.

4.5 CAN

DSEM812 is equipped with three CAN ports. Support for configuring them is provided using
ldsenetwork library.

Add the library to LIBS within the
.pro project file.

Within the cpp file include the
required header files

Example CAN port configuration
250 = 250 kbit/s
0=Interface 0 (CAN1)

4.5.1 PROCEDURE TO CONNECT TO THE CAN

NOTE: A CAN application that does not receive CAN messages (used for transmit only)
must still implement the FramesReceived method. This provides a mechanism to retrieve
frames from the QCANBus device and prevents the receive memory overflowing.

NOTE: For full details, see Examples\CAN provided in the DSEM812 Qt package.

• Use dse_network_set_can_config to configure the device hardware.

• Create the QCANBus SocketCAN.

• Connect the SocketCAN to the device hardware,

• Connect QCANBus device signal FramesReceived to the event handler within your own cpp
file.

• The event handler you provide for FramesReceived is used to filter and parse the incoming
CAN frames (messages) as required.

Connecting to Qt

057-317 ISSUE: 1 Page 28 of 36

4.6 GPS

NOTE: A suitable external GPS antenna is required. For full specification see DSE
Publication 057-317 DSEM812 Operator Manual.

Within the QML file, the following imports are required:

QML PositionSource item is used to retrieve the location at the given updateInterval (ms).

4.7 DEPLOYING THE APPLICATION TO THE DEVICE

NOTE: Successful communications with the device is required before deploying the
application. Refer to section entitled Checking Connection to the Device elsewhere in this
document.

4.7.1 ERROR CHECKING

NOTE: Before clicking Run ensure there are no errors in the code. Many errors are
detected by Qt before compilation and are shown with red underlines in the code.

Some errors are not detected until the project Build process. Press to build (without deploying).

Error indication.

Error description. In this case a missing “:” after x.

Connecting to Qt

 Page 29 of 36 057-317 ISSUE: 0

4.7.2 DEPLOY APPLICATION

NOTE: Ensure Device Settings application is closed (exited) before sending your
application to the device. Failure to do this may result in multiple applications displaying items
on the display at the same time.

NOTE: When updating an application on the device, ensure the ‘old’ version running on
the device is closed before writing the updated version to the device. For further details, see
section entitled Ceasing (killing) a Running Application elsewhere in this document.

NOTE: The device accepts multiple applications to be installed to it at the same time. To
select the application to start at device boot up, refer to section entitled Selecting an
Application to Auto Run elsewhere in this document.

NOTE: Where multiple applications are running on the device simultaneously, ensure
there is no conflict in the use of the display. It is recommended that only one application
utilises the display.

Click (Run) to build the application and
deploy to the device.

Connecting to Qt

057-317 ISSUE: 1 Page 30 of 36

4.8 SELECTING AN APPLICATION TO AUTO RUN

NOTE: The device detects the presence of Run.sh and creates a new ‘factory set’ file if
not present.

To configure the device to automatically start an application upon device boot up we must edit Run.sh
on the device.

Options are

• Maintain a Run.sh file in the project folder. Deploy this file by adding the following to the
project file (.pro file)

This method is detailed within the Examples provided with the DSEM812 Virtual Machine
Package.

• Modify Run.sh in the location /home/m812 as detailed below :

Within Qt select Tools | Options.

Then select Devices.

Connecting to Qt

 Page 31 of 36 057-317 ISSUE: 0

NOTE: The ‘factory set’ Run.sh’ contains clean-up code to gracefully close the application
should the calling process be terminated. This may be removed if desired, maintaining only
the APPLICATION variable naming the application to run at boot time.

Click Open Remote Shell to allow commands
to be actioned on the device. The shell is
opened at the location /home/m812/

Type ls and press Enter to show a list of the
files present in the /home/m812 folder.

This is the Shell File that is run at device
bootup.

Type nano run.sh to open Nano (a text editor)
and edit the Run.sh file

Use Cursor Keys to move the cursor and after
APPLICATION=’ enter /home/m812/xxxxxxxx
where xxxxxxxx is the name of the application
you require to start at device boot. This name
must match exactly the application name
(case sensitive).

Press CTRL X when done.

In this example CAN and Touchscreen are two
applications present on the device.

Connecting to Qt

057-317 ISSUE: 1 Page 32 of 36

Close the Terminal window and power cycle the device to check the change.
If your application fails to start at boot up:

• Use ls to check the presence and exact spelling of the application on the device in folder
/home/m812. (Check case)

• Use Nano to check the path is correctly entered (case sensitive).

• Check the application by executing it directly from the Remote Terminal. Enter its name at the
command prompt.

Confirm changes.
Press Y – Save and exit.
Press N – Exit (discard changes)
Press CTRL C – Do not exit.

Connecting to Qt

 Page 33 of 36 057-317 ISSUE: 0

4.9 CEASING (KILLING) A RUNNING APPLICATION

To cease a running application, use a Remote Shell:

NOTE: Show Running Processes is an advanced option to list all running applications on
the device. The popup may also be used to stop those processes. However accidental use may
stop a critical process requiring a device reboot. For this reason, it is recommended to use
Remote Shell as detailed below.

Within Qt select Tools | Options.

Then select Devices.

Click Open Remote Shell to allow commands
to be actioned on the device. The shell is
opened at the location /home/m812/

Type killall followed by a
space and the name of the
running application. Then
press <Enter>

Warranty and Disposal

057-317 ISSUE: 1 Page 34 of 36

5 MAINTENANCE AND WARRANTY

The device is Fit and Forget. As such, there are no user serviceable parts within the controller.
In the case of malfunction, you should contact your original equipment manufacturer (OEM).

DSE Provides limited warranty to the equipment purchaser at the point of sale. For full details of any
applicable warranty, refer to the original equipment supplier (OEM).

6 DISPOSAL

6.1 WEEE (WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT)

If you use electrical and electronic equipment you must store, collect, treat, recycle, and
dispose of WEEE separately from your other waste

7 MISCELLANEOUS

This product includes copyrighted third-party software licensed under the terms of the GNU General
Public License. A copy of the corresponding source code for all included third-party software is
available on request, please contact DSE Technical Support for additional information.

http://en.wikipedia.org/wiki/File:WEEE_symbol_vectors.svg

This Page is Intentionally Blank

This Page is Intentionally Blank

	1 Introduction
	1.1 Clarification of Notation
	1.2 Glossary of Terms
	1.3 Related Information
	1.3.1 Technical Information

	1.4 Safety Instructions
	1.4.1 General
	1.4.2 Installation Notes

	2 Qt, C++ and QML
	2.1 Properties, Signals and Slots
	2.1.1 Signals
	2.1.1.1 Property Definition
	2.1.1.2 Signal Definition
	2.1.1.3 Signal usage

	2.1.2 Slots
	2.1.2.1 Property Definition
	2.1.2.2 Slot Definition
	2.1.2.3 Slot method

	3 Installing the Qt Environment
	3.1 Package Install
	3.1.1 Creating the Machine
	3.1.2 Creating a Shared Folder
	3.1.3 Installing the Package
	3.1.4 Checking the Kit

	4 Connecting to Qt
	4.1 File System Path
	4.2 Checking Connection to the Device
	4.3 Start New Project
	4.4 I/O
	4.5 CAN
	4.5.1 Procedure to connect to the CAN

	4.6 GPS
	4.7 Deploying the Application to the device
	4.7.1 Error Checking
	4.7.2 Deploy Application

	4.8 Selecting an Application to Auto Run
	4.9 Ceasing (Killing) a Running Application

	5 Maintenance and Warranty
	6 Disposal
	6.1 WEEE (Waste Electrical and Electronic Equipment)

	7 MiscELLANEOUS

