

DEEP SEA ELECTRONICS DSEG8600 Configuration Suite PC Software Manual

Document Number: 057-322

Author: Ian Roberts

Deep Sea Electronics Ltd. Highfield House Hunmanby North Yorkshire YO14 0PH England

Sales Tel: +44 (0) 1723 890099

E-mail: <u>sales@deepseaelectronics.com</u> Website: <u>www.deepseaelectronics.com</u>

DSEG8600 Configuration Suite PC Software Manual

© Deep Sea Electronics Ltd.

All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means or other) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988.

Applications for the copyright holder's written permission to reproduce any part of this publication must be addressed to Deep Sea Electronics Ltd. at the address above.

The DSE logo and the names DSEGenset[®], DSEATS[®], DSEPower[®] and DSEControl[®] are UK registered trademarks of Deep Sea Electronics Ltd.

Any reference to trademarked product names used within this publication is owned by their respective companies.

Deep Sea Electronics Ltd. reserves the right to change the contents of this document without prior notice.

Amendments Since Last Publication

Amd. No.	Config Suite Version No	Comments	Date
1	1.0	Initial release	28/10/2022

Typeface: The typeface used in this document is Arial. Care must be taken not to mistake the upper-case letter I with the numeral 1. The numeral 1 has a top serif to avoid this confusion.

TABLE OF CONTENTS

Section

Page

1	INTRODUCTION	8
•		
	1.2 GLOSSARY OF TERMS	
	1.3 BIBI IOGRAPHY	11
	1.3.1 INSTALLATION INSTRUCTIONS	11
	1.3.2 MANUALS	12
	1.3.3 TRAINING GUIDES	.13
	1.3.4 THIRD PARTY DOCUMENTS	
	1.4 INSTALLATION AND USING THE DSE CONFIGURATION SUITE SOFTWARE	14
~		
2		15
	2.1 USER CONTROLS	.15
3	EDITING THE CONFIGURATION	17
	3.1 SCREEN LAYOUT	17
	3.2 APPLICATION	18
	3.3 MODULE	21
	3.3.1 MODULE OPTIONS	21
	3.3.2 MISCELLANEOUS OPTIONS	24
	3.3.3 CONFIGURABLE FRONT PANEL EDITOR	.29
	3.3.4 CONFIGURABLE INSTRUMENTATION DISPLAY	. 30
	3.3.5 EVENT LOG	. 31
	3.3.6 DATA LOGGING	.34
	3.3.6.1 CONFIGURATION	. 35
	3.3.6.2 OPTIONS	.36
	3.4 INPUTS	. 37
	3.4.1 ANALOGUE INPUT CONFIGURATION	.37
	3.4.2 ANALOGUE INPUTS	.40
	3.4.2.1 CREATING / EDITING THE SENSOR CURVE	.43
		.46
		.40
		.40
		.49
	3.4.4 VIRTUAL INFUTS	
	3.4.4.1 VICTOAL INFOTS	.50 58
		58
	3.5.2 VIRTUAL LEDS	.50
	353 OUTPUT SOURCES	60
	3.5.3.1 ALARMS	.60
	3.5.3.2 CONTROL	
	3.5.3.3 STATUS	72
	3.6 TIMERS	.78
	3.6.1 START TIMERS	.78
	3.6.2 LOAD / STOPPING TIMERS	. 80
	3.6.3 MODULE TIMERS	.83
	3.7 GENERATOR	.84
	3.7.1 GENERATOR OPTIONS	.85
	3.7.2 GENERATOR RATING	.87
	3.7.3 GENERATOR DE-RATE	.88
	3.7.4 GENERATOR VOLTAGE	.89
	3.7.5 GENERATOR SEQUENCE ALARMS	.92
	3.7.6 GENERATOR FREQUENCY	.95
	3.7.7 GENERATOR CURRENT	.98
	3.7.7.1 GENERATOR CURRENT OPTIONS	

3.7.7.2 GENERATOR CURRENT ALARMS	99
3.7.7.2.1 DEFAULT CURRENT PROTECTION TRIPPING CHARACTERISTICS	109
3.7.8 GENERATOR POWER	111
3.7.8.1 OVERLOAD PROTECTION	112
3.7.8.2 LOAD CONTROL	112
3.7.8.3 REVERSE POWER	114
	114
	110
3.7.9.1 STING OF HONS	110
3.7.9.2 ONLOR STNO	121
3794 I OAD CONTROL	123
3.7.9.4.1 LOAD CONTROL (MULTI SET)	124
3.7.9.4.2 LOAD CONTROL (SINGLE SET)	129
3.7.9.4.3 LOAD DEMAND (MULTI SET)	131
3.7.9.4.4 CREATING / EDITING THE DROOP CURVES	138
3.7.9.5 SET DRIVE PROTECTION	140
3.7.9.6 POWER CONTROL	143
3.7.9.6.1 CREATING / EDITING THE POWER MODE CURVE	146
3.7.9.7 VOLTAGE AND REACTIVE POWER CONTROL	147
3.7.10 FAULT RIDE THROUGH	150
3.8 BUS (MULTI SET)	153
3.8.1 BUS OPTIONS	154
3.8.2 BUS SEQUENCE ALARMS	155
3.9 MAINS (SINGLE SET ONLY)	159
3.9.1 MAINS OPTIONS	160
3.9.2 MAINS VOLTAGE ALARMS	163
3.9.3 MAINS SEQUENCE ALARMS	164
3.9.4 MAINS FREQUENCY ALARMS	166
	407
3.9.5 MAINS CURRENT	167
3.9.5 MAINS CORRENT	167 168
3.9.5 MAINS CORRENT	167 168 169
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS	167 168 169 170
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY	167 168 169 170 172
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY	167 168 169 170 172 172 174
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION	167 168 169 170 172 174 175
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 2.11.2 OIL PRESSURE	167 168 169 170 172 174 175 176
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 2.11.2 COOL ANT TEMPERATURE	167 168 169 170 172 174 175 176 177
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.1.1 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 2.11.3.1 COOLANT TEMPERATURE	167 168 169 170 172 174 175 176 177 180
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOL ANT SENSOR CURVE	167 168 169 170 172 174 175 176 177 180 180 181
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE ALARM	167 168 169 170 172 174 175 176 177 180 180 181 185
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUELLEVEL	167 168 169 170 172 174 175 176 177 180 180 181 185 186
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4 FUEL LEVEL	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE ALARM 3.11.3.4 FUEL LEVEL 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE ALARM 3.11.4 FUEL LEVEL 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.3 EUEL ALARMS	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194
3.9.5 MAINS CURRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.3 FUEL ALARMS 3.11.5 FUEL USE AND EFFICIENCY	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4.1 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.3 FUEL ALARMS 3.11.5 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 199
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4.4 FUEL LEVEL 3.11.4.5 FUEL CONTROL AND MONITORING 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.3 FUEL ALARMS 3.11.4.3 FUEL ALARMS 3.11.5 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 199 200
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.3 COOLANT TEMPERATURE 3.11.3 COOLANT TEMPERATURE ALARM 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.1 FUEL CONTROL AND MONITORING SENSOR 3.11.4.3 FUEL ALARMS 3.11.4.3 FUEL USE AND EFFICIENCY 3.11.4 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS 3.11.8 ECU (ECM) OPTIONS	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 199 200 202
3.9.5 MAINS CURRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4 FUEL CONTROL AND MONITORING 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.3 FUEL ALARMS 3.11.4.3 FUEL ALARMS 3.11.4 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS 3.11.8 ECU (ECM) OPTIONS 3.11.9	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 199 200 202 205
3.9.5 MAINS CURRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.3 FUEL ALARMS 3.11.4.3 FUEL ALARMS 3.11.4.3 FUEL ALARMS 3.11.4 EU USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS 3.11.	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 200 202 205 205
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.2.1 EDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE ALARM 3.11.3.4 FUEL LEVEL 3.11.3.5 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.3 FUEL ALARMS 3.11.4.3 FUEL ALARMS 3.11.5 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS 3.11.8 ECU (ECM) OPTIONS 3.11.9 ECU (ECM) OPTIONS 3.11.9.1 ECU (167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 200 202 205 205 205 206
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.3 COOLANT TEMPERATURE 3.11.3 COOLANT TEMPERATURE ALARM 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COLANT SENSOR CURVE 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4 FUEL LEVEL 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.3 FUEL ALARMS 3.11.5 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS 3.11.8 ECU (ECM) OPTIONS 3.11.9 ECU (ECM) ALARMS 3.11.9.1 ECU (ECM)	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 200 202 205 205 206 210
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE PROTECTION 3.11.2 OIL PRESSURE 3.11.3 COOLANT TEMPERATURE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.1 FUEL ALARMS 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.1 FUEL ALARMS 3.11.5 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS 3.11.8 ECU (ECM) OPTIONS 3.11.9 ECU (ECM) ALARMS 3.11.9.1 ECU (ECM) DATA FAIL 3.11.9.2 DM1	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 199 200 202 205 206 210 213
3.10 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 OIL PRESSURE 3.11.3 COOLANT TEMPERATURE 3.11.3 COOLANT TEMPERATURE ALARM 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COLANT SENSOR CURVE 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4.4 FUEL LEVEL 3.11.4.5 CREATING/EDITING FUEL CONTROL & MONITORING 3.11.4.7 FUEL ALARMS 3.11.4.8 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS 3.11.8 ECU (ECM) OPTIONS 3.11.9 ECU (ECM) DATA FAIL 3.11.9.1 ECU (ECM) DATA FAIL 3.11.9.2 DM1 SIGNALS 3.11.9.3 ADVANCED	167 168 169 170 172 174 175 176 177 180 181 185 186 197 198 197 200 2012 202 205 206 210 213 213
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY. 3.11 ENGINE 3.11.1 ENGINE 3.11.2 VOLTAGE ALARMS 3.11.1 ENGINE 3.11.2 INGINE PROTECTION 3.11.2 INING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3 COOLANT TEMPERATURE ALARM 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3 COOLANT TEMPERATURE CONTROL 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.3 FUEL ALARMS 3.11.4.4 FUEL ALARMS 3.11.5 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS 3.11.9 ECU (ECM) DATA FAIL 3.11.9.1 ECU (ECM) DATA FAIL <	167 168 169 170 172 174 175 176 177 180 181 185 186 187 188 194 197 200 202 205 206 210 213 213 214
3.9.5 MAINS CORRENT 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 OIL PRESSURE 3.11.2 IDITING THE OIL SENSOR CURVE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.1 FUEL ALARMS 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4.3 FUEL ALARMS 3.11.4 FUEL ALARMS 3.11.5 FUEL USE AND EFFICIENCY 3.11.6 DEF LEVEL 3.11.7 ENGINE OPTIONS 3.11.8 ECU (ECM) DATA FAIL 3.11.9 ECU (ECM) DATA FAIL 3.11.9.1 ECU (ECM	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 199 200 202 205 205 205 206 210 213 213 214 214 216
3.9.5 MAINS DECOUPLING 3.10 MAINS DECOUPLING 3.10.1.1 LOSS OF MAINS 3.10.1.2 VOLTAGE ALARMS 3.10.1.3 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 FREQUENCY 3.11 ENGINE 3.11.1 ENGINE 3.11.2 DIL PRESSURE 3.11.3 COOLANT TEMPERATURE 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.1 COOLANT TEMPERATURE ALARM 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.1 COOLANT TEMPERATURE CONTROL 3.11.3.2 EDITING THE COOLANT SENSOR CURVE 3.11.3.3 COOLANT TEMPERATURE CONTROL 3.11.4 FUEL LEVEL 3.11.4 FUEL CONTROL AND MONITORING 3.11.4 FUEL CONTROL AND MONITORING 3.11.4 FUEL CONTROL AND MONITORING 3.11.4.1 FUEL CONTROL AND MONITORING 3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR 3.11.4 FUEL ALARMS 3.11.4.3 FUEL ALARMS 3.11.4 FUEL ALARM	167 168 169 170 172 174 175 176 177 180 180 181 185 186 187 188 194 197 200 202 205 205 206 210 213 213 214 216 217

3.11.15 PLANT BATTERY	
3.11.16 INLET TEMPERATURE	
3.11.17 ENGINE ICON DISPLAYS	
3.11.17.1 ICON INSTRUMENTATION	
3.12 COMMUNICATIONS	
3.12.1 COMMUNICATIONS OPTIONS	
3.12.2 R5485 PURIS	
3 12 3 2 INCOMING TRAFFIC (VIRTUAL SERVER)	
3 12 4 NOTIFICATIONS	233
3.12.4.1 SNMP	
3.12.4.2 NOTIFICATIONS	
3.13 SCHEDULER	
3.13.1 SCHEDULER OPTIONS	
3.13.2 BANK 1 / BANK 2	
3.14 MAINTENANCE ALARM	237
3.15 CONFIGURABLE CAN INSTRUMENTATION	
3.15.1 RECEIVED INTRUMENTATION (1-30)	
3.15.1.1 DETAILS	
3.15.2 TRANSMITTED INSTRUMENTATION	
3.15.2.1 DETAILS	
3.15.3 EXPORT / IMPORT CONFIGURABLE CAN	
3.16.1 ALTERNATIVE CONFIGURATION OPTIONS	
3.10.2 ALTERNATIVE CONFIGURATION 1.10.5	
3.16.2.2 GENERATOR / ENGINE /BUS / MAINS / ENGINE	
3 17 EXPANSION	240 247
3 17 1 DSE2130 INPLIT MODULES	248
3 17 1 1 ANALOGUE INPUT CONFIGURATION	249
3.17.1.2 ANALOGUE INPUTS	
3.17.1.3 DIGITAL INPUTS	
3.17.1.3.1 DIGITAL INPUTS	
3.17.1.3.2 ANALOGUE INPUTS	
3.17.2 DSE2131 INPUT MODULES	
3.17.2.1 ANALOGUE INPUT CONFIGURATION	
3.17.2.2 ANALOGUE INPUTS	
3.17.2.3 DIGITAL INPUTS	
3.17.3 DSE2133 INPUT MODULES	
3.17.3.1 ANALOGUE INPUTS	
3.17.4 DSE2152 OUTPUT MODULES	
3.17.4.2 UKEATING / EDITING THE OUTPUT CURVE	
3.17.0 DOE2040 ANNUNUNUATUR MUDULEO	
3 17 8 CREATING / EDITING THE SENSOR CURVES	214 276
3 18 ADVANCED	270 270
3.18.1 ADVANCED OPTIONS	280
3.18.2 AVR	285
3.18.3 RESET ELECTRICAL TRIP	
3.18.4 PLC	
3.18.5 CONFIGURABLE GENCOMM PAGES 166 TO 169	
4 00404	
4 SUADA	
4.1 GENERATOR IDENTITY	

4.5 DIGITAL OUTPUTS	296
4.6 VIRTUAL LEDS	
4.7 BUS (MULTI SET)	
4.8 MAINS (SINGLE SET)	
4.8.1 FREQUENCY & VOLTAGES	
4.8.2 POWER	
4.9.1 FREQUENCY, VOLTAGES AND CURRENT	
	202
4.9.5 AMOUTING GAIN (P) STABILITY (I) AND DERIVATIVE (D)	304
494 GOVERNOR / AVR INTEREACE	306
4.9.4.1 SW1	
4.9.4.2 SW2	
4.9.4.3 VOLTAGE SETTINGS	
4.9.4.4 SUMMARY	
4.9.4.5 CURRENT SETTINGS	
4.9.5 SYNC	310
4.9.5.1 ANALOGUE	
4.9.6 LOAD CONTROL	
4.9.7 LOAD LEVELS	
4.9.8 DROOP (MULTISET)	
4.9.9 DE-RATE	
4.10.1 FUEL USE AND EFFICIENCY	320
4.17 I LEXIBLE SENSORS	321
4.13 ALARMS	
4.14 ENGINE ALARMS	
4.14.1 CURRENT ENGINE ALARMS	
4.14.2 PREVIOUS ENGINE ALARMS	
4.15 STATUS	
4.16 EVENT LOG	
4.17 ENHANCED CANBUS	
	321
4.18.1 RECALIBRATE TRANSDUCERS (A TO G)	320
4.18.3 HOURS RUN AND NUMBER OF STARTS	329
4.18.4 TIME	330
4.18.5 ACCUMULATED INSTRUMENTATION	
4.18.6 FULE USE AND EFFICIENCY	
4.18.7 MAINTENANCE ALARM RESET	
4.18.8 ELECTRONIC ENGINE CONTROLS	
4.18.9 MODULE PIN	
4.19 COMMUNICATIONS INFORMATION	
4.20 DATA LOG	
4.20.1 DATA LOG STATUS	
4.21.1 FREQUEINDT, VULTAGES AND OURKENT	240
4.21.2 DIAGNOSTICS	340
4 21 4 CONTROL	
4.21.5 AVR ALARMS	
4.22 EXPANSION	
	212
	343
6 ALARM ARMING	344
6.1 NEVER	
6.2 ALWAYS	
6.3 WHEN STATIONARY	

6.4	FROM STARTING	
6.5	OVERSHOOT	
6.6	FROM SAFETY ON	
6.7	FROM BREAKER CLOSED	
6.8	FROM MAINS PARALLEL	

1 INTRODUCTION

This document details the use of the *DSE Configuration Suite PC Software* with the DSEG8600 module, which is part of the DSEGenset® range of products.

The manual forms part of the product and should be kept for the entire life of the product. If the product is passed or supplied to another party, ensure that this document is passed to them for reference purposes.

This is not a *controlled document*. DSE do not automatically inform on updates. Any future updates of this document are included on the DSE website at <u>www.deepseaelectronics.com</u>

The DSE Configuration Suite PC Software allows the DSEG8600 module to be connected to a PC via USB A to USB B cable (USB printer cable). Once connected, the software allows easy, controlled access to various operating parameters within the module which can then be viewed and edited as required.

The DSE Configuration Suite PC Software must only be used by competent, qualified personnel, as changes to the operation of the module may have safety implications on the panel / generating set to which it is fitted. Access to critical operational sequences and settings for use by qualified engineers, may be barred by a security code set by the generator provider.

The information contained in this manual must be read in conjunction with the information contained in the appropriate module documentation. This manual only details which settings are available and how they may be used. Separate manuals deal with the operation of the individual module and its ancillaries, refer to section 1.3 entitled *Bibliography* in this document for further information.

1.1 CLARIFICATION OF NOTATION

Clarification of notation used within this publication.

ANOTE:	Highlights an essential element of a procedure to ensure correctness.
	Indicates a procedure or practice, which, if not strictly observed, could result in damage or destruction of equipment.
E WARNING!	Indicates a procedure or practice, which could result in injury to personnel or loss of life if not followed correctly.

1.2 GLOSSARY OF TERMS

Term	Description	
AC	Alternating Current	
AMSC	Advanced Multi-Set Communication	
AVR	Automatic Voltage Regulator	
BMS	Building Management System	
	A computer-based control system for a building's infrastructure.	
BUS	BUS is a communication system that transfers data between components inside a	
	computer, or between computers.	
CAN	Controller Area Network	
	Vehicle standard to allow digital devices to communicate to one another.	
CDMA	Code Division Multiple Access. Cell phone access used in small number of areas	
	including parts of the USA and Australia.	
СТ	Current Transformer	
	An electrical device that takes a large AC current and scales it down by a fixed ratio	
	to a smaller current.	
DC	Direct Current	
DEF	Diesel Exhaust Fluid (AdBlue)	
	A liquid used as a consumable in the SCR process to lower nitric oxide and	
	nitrogen dioxide concentration in engine exhaust emissions.	
DHCP	DHCP (Dynamic Host Configuration Protocol) is a protocol that provides quick,	
	automatic, and central management for the distribution of IP addresses within a	
	network.	
DM1	Diagnostic Message 1	
	A diagnostic message that contains one or more DTCs that are currently active on	
5146	the engine ECU.	
DM2	Diagnostic Message 2	
	A DTC that was previously active on the engine ECU and has been stored in the	
51/0	ECU's internal memory.	
DNS	Domain Name Server	
DPF	Diesel Particulate Filter	
	A filter fitted to the exhaust of an engine to remove diesel particulate matter or soot	
DDTO	From the exhaust gas.	
DPTC	Diesei Particulate Temperature Controlled Filter	
	A filter fitted to the exhaust of an engine to remove diesel particulate matter or soot	
DTC	Diagnastia Trauble Code	
DIC	Diagnostic Trouble Code	
	The name for the entire fault code sent by an engine ECU.	
	Engine Control Only Management	
	An electronic device that monitors engine parameters and regulates the fuelling.	

Continued over page...

Term	Description
EMC	Electromagnetic compatibility is the ability of electrical equipment and systems to
	function acceptably in their electromagnetic environment
FMI	Failure Mode Indicator. A part of DTC that indicates the type of failure, e.g., high,
	low, open circuit etc.
FPE	Front Panel Editor
FRT	Fault Ride Through
Fuel Tank	An external tank used to collect fuel that may leak or overflow from the fuel tank.
Bund	This tank may also be integral to the main fuel tank. A level switch is usually
	located within the Bund to indicate the presence of the leak or overflow condition.
GB	Gigabyte
GPRS	General Packet Radio Service
GSM	Global System for Mobile communications. Cell phone technology used in most of
	the World.
HEST	High Exhaust System Temperature
	Initiates when DPF filter is full in conjunction with an extra fuel injector in the
	exhaust system to burn off accumulated diesel particulate matter or soot.
IDMT	Inverse Definite Minimum Time
IEEE	Institute of Electrical and Electronics Engineers
ISBN	International Standard Book Number
LAN	Local Area Network
LCD	Liquid Crystal Display
LED	Light Emitting Diode
LSB	Least Significant Bit
MPU	Magnetic Pickup
MSB	Most Significant Bit
NAPT	Network Address and Port Translation
NVD	Neutral Voltage Displacement
OEM	Original Equipment Manufacturer
PCI	Peripheral Component Interface
PCMCIA	Personal Computer Memory Card International Association
PDU	Protocol Data Unit.
PGN	Parameter Group Number. A CANbus address for a set of parameters that relate to
	the same topic and share the same transmission rate.
PID	Gain (P), Stability (I) and Derivative (D) settings of the engine's governor
PIN	Personal Identification Number
PLC	Programmable Logic Controller. A programmable digital device used to create logic
5140	for a specific purpose.
RMS	Root Mean Square
R.O.C.O.F.	Rate Of Change Of Frequency
	Revolutions Per Minute
RID	Resistance Thermometer Detectors
SCADA	Supervisory Control And Data Acquisition
	A system that operates with coded signals over communication channels to provide
SCR	A process that uses DEE with the old of a patalvat to convert pitric avide and
SUK	A process that uses DEF with the ald of a catalyst to convent mithe oxide and
SNIMP	Simple Network Management Protocol. An international standard protocol for
SINIM	managing devices on IP networks
SPN	Suspect Parameter Number, A part of DTC that indicates what the failure is e o
	oil pressure, coolant temperature, turbo pressure etc
ТСР	TCP (Transmission Control Protocol) is a standard that defines how to establish
	and maintain a network conversation via which application programs can exchange
	data.
UL	Underwriters Laboratory
USB	Universal Serial Bus
WAN	Wide Area Network

1.3 **BIBLIOGRAPHY**

This document refers to, and is referred by the following DSE publications which are obtained from the DSE website: <u>www.deepseaelectronics.com</u> or by contacting DSE technical support: <u>support@deepseaelectronics.com</u>.

1.3.1 INSTALLATION INSTRUCTIONS

Installation instructions are obtained from the DSE website: <u>www.deepseaelectronics.com</u> or by contacting DSE technical support: <u>support@deepseaelectronic.com</u> and are intended as a 'quick start' guide only.

DSE Part	Description
053-032	DSE2548 LED Expansion Annunciator Installation Instructions
053-033	DSE2130 Input Expansion Installation Instructions
053-034	DSE2157 Output Expansion Installation Instructions
053-049	DSE9xxx Battery Charger Installation Instructions
053-125	DSE2131 Ratio-metric Input Expansion Installation Instructions
053-126	DSE2133 RTD/Thermocouple Input Expansion Installation Instructions
053-134	DSE2152 Ratio-metric Output Expansion Installation Instructions
053-147	DSE9460 & DSE9461 Battery Charger Installation Instructions
053-152	DSE123 Cummins PCC Variant Installation Instructions
053-185	DSE9473 & DSE9483 Battery Charger Installation Instructions
053-233	DSEA108 Installation Instructions
053-245	DSEA109 Installation Instructions
053-253	DSEG8660 Installation Instructions
053-254	DSEG8680 Installation Instructions
053-256	DSEG8600 Installation Instructions
053-263	DSEG0123 Installation Instructions

1.3.2 MANUALS

Product manuals are obtained from the DSE website: <u>www.deepseaelectronics.com</u> or by contacting DSE technical support: <u>support@deepseaelectronics.com</u>.

DSE Part	Description
057-004	Electronic Engines and DSE Wiring Guide
057.045	Guide to Synchronising and Load Sharing Part 1
057-045	(Usage of DSE Load Share Controllers in synchronisation / load sharing systems.)
057-046	Guide to Synchronising and Load Sharing Part 2 (Governor & AVR Interfacing)
057-047	Load Share System Design and Commissioning Guide
057-082	DSE2130 Input Expansion Operator Manual
057-083	DSE2157 Output Expansion Operator Manual
057-084	DSE2548 Annunciator Expansion Operator Manual
057-085	DSE9xxx Battery Charger Operator Manual
057-139	DSE2131 Ratio-metric Input Expansion Manual
057-140	DSE2133 RTD/Thermocouple Expansion Manual
057-141	DSE2152 Ratio-metric Output Expansion Manual
057-151	DSE Configuration Suite PC Software Installation & Operation Manual
057-176	DSE9460 & DSE9461 Battery Charger Operator Manual
057-312	DSEAssistant PC Software Manual
057-314	Advanced PLC Software Manual
057-323	DSEG8600 Operator Manual
057-350	DSEG0123 Operator Manual
N/A	DSEGenComm (Modbus protocol for DSE controllers)

1.3.3 TRAINING GUIDES

Training guides are provided as 'hand-out' sheets on specific subjects during training sessions and contain specific information regarding to that subject.

DSE Part	Description
056-001	Four Steps To Synchronising
056-005	Using CTs With DSE Products
056-006	Introduction to Comms
056-010	Over Current Protection
056-013	Load Demand Scheme
056-018	Negative Phase Sequence
056-019	Earth Fault Protection
056-020	Loss Of Excitation
056-021	Mains Decoupling
056-022	Switchgear Control
056-023	Adding New CAN Files
056-024	GSM Modem
056-026	kVA, kW, kvar and Power Factor
056-029	Smoke Limiting
056-030	Module PIN Codes
056-033	Synchronising Requirements
056-036	DSE Module Expansion
056-043	Sync Process
056-045	PLC as Load Demand Controller
056-047	Out of Sync and Failed To Close
056-051	Modbus Control
056-053	Recommended Modems
056-055	Alternate Configurations
056-057	SW1 & SW2
056-069	Firmware Update
056-072	Dead Bus Synchronising
056-075	Adding Language Files
056-076	GenComm Alarms
056-079	GenComm Status
056-080	Modbus
056-081	Screen Heaters
056-082	Override GenComm PLC Example
056-084	Synchronising & Load sharing
056-086	G59
056-091	Equipotential Earth Bonding
056-092	Best Practices for Wiring Restive Sensors
056-095	Multi Set Controller Input Functions
056-097	USB Earth Loops and Isolation
056-099	Digital Output to Digital Input Connection
056-118	Configurable CAN
056-123	Simulation Injection Testing

1.3.4 THIRD PARTY DOCUMENTS

The following third-party documents are also referred to:

Reference	Description	
	IEEE Std C37.2-1996 IEEE Standard Electrical Power System Device	
ISBN 1-55937-879-4	Function Numbers and Contact Designations. Institute of Electrical and	
	Electronics Engineers Inc	
ISBN 0-7506-1147-2	Diesel generator handbook. L.L.J. Mahon	
ISBN 0-9625949-3-8	On-Site Power Generation. EGSA Education Committee.	

1.4 INSTALLATION AND USING THE DSE CONFIGURATION SUITE SOFTWARE

For information regarding installing and using the *DSE Configuration Suite PC Software*, refer to DSE publication: **057-151 DSE Configuration Suite PC Software Installation & Operation Manual** which is found on the DSE website: www.deepseaelectronics.com

2 GENERAL CONTROLS

ANOTE: For information on Menu & Toolbars please refer to DSE Publication: 057-151 DSE Configuration Suite PC Software Installation & Operation Manual

<u>Overview</u>

The DSE Configuration Suite PC Software dialog boxes provide the user with a way to type text, choose options, and initiate actions. Controls in other windows provide a variety of services, such as letting the user choose commands and view and edit text. This section describes the controls provided by the DSE Configuration Suite and how to manipulate them.

The diagram below shows the general controls of the main configuration screen.

2.1 USER CONTROLS

<u>Slider</u>

The Slider Control allows the user to change a value using a mouse or arrows found on a standard keyboard.

The slider is highlighted in green in its inactive state and will change to orange (active state) once selected by a mouse pointer.

During the active state, the slider is moved with the mouse pointer and the left and right keyboard arrows.

<u>Spin Box</u>

The Spin box displays the current value of the setting in the group box.

Clicking the mouse over the Spin box will change its colour to orange putting it in an active state.

During the active state text is entered using the keyboard, changed using the mouse pointer or the up and down arrows on the keyboard.

Check box

Used to select a parameter

Drop down menu

Used to select an action

Used to select a source

3 EDITING THE CONFIGURATION

The software is broken down into separate sections to provide simple navigation whilst editing the module's configuration to suit a particular application.

3.1 SCREEN LAYOUT

3.2 APPLICATION

Application Switching

The *Application Switching* page allows the user to configure the module as a *Multiset Controller, Single Set Controller* or set dynamically to switch between each application.

Application Swit	tching
Allowed Modes	Multi Set and Single Set 👻
Parameter Allowed Modes	 Description Select the operating application of module: Single Set Only: Enables only the Single Set Controller application. This enables the module to start and stop the generator, and if required, synchronise and load-share the generator with the mains to provide Single Set Control with mains fail detection and peak lopping/shaving functionality. Multi Set and Single Set: Enables both the Multi Set Controller and Single Set Controller application. The application is dynamically selected by activation of a Digital Input, GenComm page 16 command or the Front Panel Editor. Multi Set Only: Enables only the Multi Set Controller application. This enables the module to start and stop the generator, and if required, synchronise and load-share the generator with other generators in the system.

CAUTION!: In Single Set Mode the controller will not work in conjunction with other sets over AMSC.

Editing the Configuration

ECU (ECM Options)

ECU (ECM) Options		
Engine Type	Conventional Diesel	-
Enhanced J1939		
Alternative Engine Speed		
Modbus Engine Comms Port	RS485 Port 1	-

NOTE: For further details and instructions on ECU (ECM) options and connections, refer to DSE Publication: 057-004 Electronic Engines and DSE Controllers which are found on our website: <u>www.deepseaelectronics.com</u>

Parameter	Description
Engine Type	Select the appropriate engine type
	Conventional Diesel: Select this for a traditional (non-electronic) engine, either Energise to Run or Energise to Stop.
	Conventional Gas Engine: Select this for a traditional (non-electronic) engine and require Gas engine functionality. This enables control of configurable outputs for <i>Gas Choke and Gas Ignition</i> and instructs the module to follow the gas engine timers.
	ECU/ECM Engines: The list of supported engine ECUs is constantly updated. To ensure the DSE Configuration Suite is up to date to attain the latest releases, navigate to <i>Help</i> menu and <i>Check For Updates</i> .
Enhanced	\Box = The module reads 'Basic' instrumentation from the engine ECU (ECM) and display (where supported by the engine):
	$\mathbf{\Sigma}$ = The module reads and display an 'Enhanced' instrumentation list (where supported by the engine):
	Where an instrument is not supported by the engine ECU (ECM), the instrument is not displayed. DSE Reserve the right to change these lists in keeping with our policy of continual development.
Alternative	□ = The engine is instructed to run at its <i>Nominal Speed</i> as configured by the
Engine Speed	Engine Manufacturer.
	Engine Manufacturer.
Modbus Engine	RS485 Port 1: The modules RS485 port is used to communicate to the engine
Comms Port	(when a Modbus engine type is selected).
	DSENet Port: The modules DSENet port is used to communicate to the engine (when a Modbus engine type is selected. This 'frees' the RS485 port in case connection to BMS or other RS485 compatible equipment is required.

Editing the Configuration

Auto Voltage Sensing (Multi Set)

Auto Voltage Sensing (Multi Set)	
Enable Auto Voltage Sensing Over Voltage During Auto Sensing Trip	277 V PhN

Option	Description
Enable Auto Voltage Sensing	 □ = The module uses the selected Main Configuration or Alternative Configuration. ☑ = Auto Voltage Sensing is enabled. When the generator is started, the module monitors the generator voltage. Depending on the voltage level and AC System
	detected, the module automatically selects between the <i>Mains Configuration</i> and <i>Alternative Configuration</i> . This is useful for hire generators where the <i>AC System</i> is selectable as no digital input signals are required to be given to the DSE module.

NOTE: Auto Voltage Sensing is not available in Single Set Mode.

3.3 MODULE

The *Module* section allows the user to edit options related to the module itself and is subdivided into smaller sections.

3.3.1 MODULE OPTIONS

Description

De	scription	
1		
2		
3		
4		

Parameter	Description
Description	Four free entry boxes to allow the user to give the configuration file a description. Typically used to enter the job number, customer name, engine information etc.
	This text is not shown on the module's display and is only seen in the configuration file.

Start Up Image

The module is configured to display a *Start UP* image as soon as it is powered up.

Start Up Image			
Show at Start Up			
Duration	2s	·]	-
Use for ScreenSaver			
Delay	5m		-
		Select Image	
		Clear	
		Cicai	
Monochroi	me bitmap of size (width	x height) 240 x 128 pixels	

Parameter	Description		
Show at Start Up	□ = Start Up screen is disabled		
	Start Up Image		
	Show at Start Up Duration 2s Use for ScreenSaver Delay 5m Select Image Clear Monochrome bitmap of size (width x height) 240 x 128 pixels.		
Use for ScreenSaver	□ = ScreenSaver is disabled		
	$\mathbf{\Sigma}$ = Module activates the ScreenSaver to show the selected image		
	after inactivity in any mode for the configured Delay time. Press any		
	button to 'end' the ScreenSaver.		
Select Image Browse and select the image file to display at power up.			
	The file required must be a monochrome bitmap image of size 240		
	pixels in width by 128 pixels in height.		
Clear	Clears the image file selection.		
Duration	Set the duration for which the Start Up Image is displayed at power		
	up.		

Power Saving Options

The modules backlight is switched off after the timer setting in *Backlight Power Save Mode Delay* in *Module Timers* has expired.

Power Saving Options
Enable Backlight Power Saving Mode

Parameter	Description
Enable Backlight Power	= The Backlight Power Saving Mode is disabled.
Saving Mode	$\mathbf{\Sigma}$ = The Backlight Power Saving Mode is enabled.

Breaker Control

This setting allows control over a Manual Breaker.

Breaker Control	
Enable Manual Breaker Control	V
Active	Always 👻

Parameter	Description
Enable Manual Breaker	= The Manual Breaker Control is disabled.
Control	☑ = The Manual Breaker Control is enabled.
	The Manual Breaker Control is activated: Always: Manual Breaker Control is always active. The module breaker buttone override lead input requests, so the breaker is
	opened.
	On Input: Manual Breaker Control is only active when a digital input
	configured for Manual Breaker Mode is active.

3.3.2 MISCELLANEOUS OPTIONS

Miscellaneous Options

Various Module options are configurable on this page.

Miscellaneous Options	
Enable Fast Loading Feature	
Audible Alarm Prior to Starting	
All Warnings are Latched	
Enable Sleep Mode	
Enable Manual Fuel Pump Control	
Support Right-To-Left Languages in Module Strings	
Power Up in Mode	Stop 👻
Enable Cool Down in Stop Mode	
Enable Maintenance Reset on Module Front Panel	
Show Active DTC	
Show Inactive DTC	
Filter Generator Voltage Display	
Filter Constant	¢ 30

Enable Fast Loading	A NOTE: Enabling Fast Loading is only recommended where steps have been taken to ensure rapid start-up of the engine is possible. (For example, when fitted with engine heaters, electronic governors etc.)
	 □ = The Fast Loading is disabled. The module observes the Safety on Delay timer in full to allow the generator time to reach operating Oil Pressure, Coolant Temperature, Engine Speed, Loading Voltage and Loading Frequency. ☑ = The Fast Loading is enabled. The module terminates the Safety on Delay timer once the generator has attained the Loading Voltage and Loading Frequency. This feature is useful if the generator is to be used in critical application as it allows it to start and go on load in the shortest possible time.
Audible Alarm Prior to Starting	 = The Audible Alarm Prior to Starting is disabled. = The Audible Alarm Prior to Starting is enabled. The module gives an audible warning during the Pre-Heat Timer to indicate the generator is about to start.
All Warnings Are Latched	 = The All Warnings Are Latched is disabled. The module automatically resets the warning and Pre-Alarms once the triggering condition has been cleared. = The All Warnings Are Latched is enabled. The module does not automatically reset the warning and Pre-Alarms. Resetting the alarm is performed by either activating a digital input configured for Alarm Reset, individual alarms using PLC, or pressing the Stop/Reset
	<i>Mode</i> O button once the triggering condition has been cleared. This option is forced by the load demand scheme (Multi Set) if the <i>Load/start next set on warning</i> option is enabled.
Enable Sleep Mode	 □ = The Sleep Mode is disabled. ☑ = The Sleep Mode is enabled. The module goes into a low current mode when it is left in the Stop/Reset Mode of for the duration of the Sleep Timer if the communication ports or data logging facility are not active. During the Sleep Mode the module effectively powers down and its display turns off. Press Stop/Reset Mode of button on

Parameter	Description
Enable Manual Fuel Pump Control	A CAUTION! It is possible to overfill the fuel tank when using
	the Manual Fuel Pump Control feature. Care must be taken to ensure the correct volume of fuel is transferred.
	NOTE: Manual Fuel Pump Control is only available when a fuel level sensor is configured.
	The Manual Fuel Pump Control is disabled
	$\mathbf{\Sigma}$ = The Manual Fuel Pump Control is enabled. To manually control
	the fuel pump, press the <i>Tick</i> 🕑 button when viewing the <i>Fuel Level</i> instrument on the module's display.
Support Right-To-Left	□ = The Support Right-To-Left Languages in Module Strings is
Languages in Module Strings	disabled. The module displays user configured strings in the order left to right.
	✓ = The Support Right-To-Left Languages in Module Strings is
	enabled. The module displays user configured strings in the order right to left.
Power Up in Mode	Select the mode which the module enters once DC power is applied.
	Auto: The module powers up in the Auto Mode.
	Manual: The module powers up in the Manual Mode.
	Stop: The module powers up in the Stop/Reset Mode
	Test (Single Set): ¹ Test ¹ The module powers up in Test (Single Set) Mode
Enable Cool Down in Stop	□ = The Cool Down in Stop Mode is disabled. Pressing the
Mode	Stop/Reset Mode O button instructs the module to immediately
	open the generator's switchgear and stop the generator.
	Stop/Reset Mode O button instructs the module to immediately
	open the generator's switchgear and instructs the generator to run for the duration of the <i>Cooling</i> cycle i.e., cooling down or cooling down
	and cooling at idle. Pressing the Stop/Reset Mode O button again results in the generator stopping immediately.
Enable Maintenance	□ = The Maintenance Reset on Module Front Panel is disabled. The
Reset on Module Front Panel	maintenance alarms are only reset using a digital input configured for <i>Maintenance Alarm Reset</i> or the <i>SCADA</i> section of the <i>DSE</i>
	Configuration Suite.
	\square = The Maintenance Reset on Module Front Panel is enabled. The maintenance alarms are resettable by pressing and holding the
	Stop/Reset Mode button when viewing the specific <i>Maintenance</i>
Show Active DTC	
	A NOTE: Show Active DTC is only available when the module is configured to communicate to an engine's ECU/ECM over
	\Box = The Show Active DTC is disabled. The module does not display
	\mathbf{M} = The Show Active DTC is enabled. The module displays DM1 fault
	codes that are active on the engine ECU/ECM.

Parameter	Description
Show Inactive DTC	A NOTE: Show Inactive DTC is only available when the module is configured to communicate to an engine's ECU/ECM over CANbus.
	□ = The Show Inactive DTC is disabled. The module does not display the historical log of DM2 fault codes from the engine ECU/ECM. \blacksquare = The Show Inactive DTC is enabled. The module displays the historical log of DM2 fault codes from the engine ECU/ECM.
Filter Generator Voltage Display	A NOTE: The generator voltage is only filtered on the module's display and not on the SCADA or any other remote monitoring device.
	 □ = The <i>Filter Generator Voltage Display</i> is disabled. The rate at which the generator voltage instruments are refreshed to display all voltage fluctuations. ☑ = The <i>Filter Generator Voltage Display</i> is enabled. The rate at which the generator voltage instruments are refreshed is configurable based on the <i>Filter Constant</i>. A larger <i>Filter Constant</i> leads to a slower refresh rate, filtering out the fluctuations on the generator voltage instruments.

Miscellaneous Options (Multi Set)

Various Module options for the *Multi Set* application are configurable on this page.

Miscellaneous Options (Multi Set)	
Filter Bus Voltage Display Filter Constant	30

Parameter	Description
Filter Bus Voltage Display	A NOTE: The Mains voltage is only filtered on the module's display and not on the SCADA or any other remote monitoring device.
	□ = The <i>Filter Bus Voltage Display</i> is disabled. The rate at which the bus voltage instruments are refreshed to display all voltage fluctuations.
	\square = The <i>Filter Bus Voltage Display</i> is enabled. The rate at which the bus voltage instruments are refreshed is configurable based on the <i>Filter Constant</i> . A larger <i>Filter Constant</i> leads to a slower refresh rate, filtering out the fluctuations on the bus voltage instruments.

Miscellaneous Options (Single Set)

Various Module options for the Single Set application are configurable on this page.

Miscellaneous Options (Single Set)	
Inhibit retransfer to mains Enable Alternative Breaker Button Control Filter Mains Voltage Display	
Filter Constant	¢ 30

Parameter	Description
Inhibit retransfer to mains	\Box = When the mains supply is reinstated after a failure, the re-
IEEE C37.2 - 3 Checking or	transfer back to mains takes place.
interlocking relay	\mathbf{Z} = This prevents the load being transferred back to the mains
	supply, ONLY in the event of the generator failure. This is used in
	peak lopping systems where the cost of using the mains to supply the
	load is so prohibitive that the customer does not want to transfer back
	to the mains supply.
Enable Alternative Breaker	Controls the operation of the fascia mounted load switch control
Button Control	button (manual mode only)
	Image: The Alternative Breaker Control Button is disabled.
	\blacksquare = The Alternative Breaker Control Button is enabled.

Parameter	Description
Filter Mains Voltage Display	A NOTE: The mains voltage is only filtered on the module's display and not on the SCADA or any other remote monitoring device.
	The Filter Mains Voltage Display is disabled. The rate at which the mains voltage instruments are refreshed to display all voltage fluctuations.
	\square = The <i>Filter Mains Voltage Display</i> is enabled. The rate at which the mains voltage instruments are refreshed is configurable based on the <i>Filter Constant</i> . A larger <i>Filter Constant</i> leads to a slower refresh rate, filtering out the fluctuations on the mains voltage instruments.

3.3.3 CONFIGURABLE FRONT PANEL EDITOR

The Configurable Front Panel Editor allows generator OEMs to create a PIN protected, customised Front Panel Editor with up to two security access levels. Items may be added or removed as required by the generator supplier.

	Configurable Front Panel Editor	
	En	able 🔽
Click to expand		 Display (4 items) Alternate Configuration (1 item) Engine (58 items) Generator (54 items) Mains (22 items) Timers (23 items) Scheduler (83 items)
		Level 1 PIN Confirmation Level 2 PIN Confirmation

Items	Description
Enable	\Box = Configuration parameters are all accessible from Front Panel Editor.
	\mathbf{M} = The Configuration parameters depend on their <i>Access</i> level.
Access	Permits the relevant item to be edited through the Front Panel Editor of the
	module.
	Access 🗸
	Level 2 PIN
	Not In FPE
	NO PIN
	Level 1 PIN
	<i>Not in FPE:</i> The item cannot be edited through the Front Panel Editor
	No PIN: Allowing access to edit the item with no PIN
	Level 1 PIN: The Front Panel Editor asks for the configured Level 1 PIN to
	allow access to the relevant item.
	Level 2 PIN: The Front Panel Editor asks for the configured Level 2 PIN to
	allow access to the relevant item.
Level 1 PIN	Set four-digit PIN number, then repeat the PIN in the Confirmation to
	configure Level 1 PIN for this access level.
	Level 1 PIN Confirmation
	Level 2 PIN Confirmation
Level 2 PIN	Set four-digit PIN number, then repeat the PIN in the <i>Confirmation</i> to
	configure Level 2 PIIV for this access level.
	Level 1 PIN Confirmation
	Level 2 PIN Confirmation

3.3.4 CONFIGURABLE INSTRUMENTATION DISPLAY

Displayed Instrumentation

Allows configuration of the modules display.

played Instrun	nentation				
Instrument 1	Not Used	-	Instrument 17	Not Used	-
Instrument 2	Not Used	-	Instrument 18	Not Used	-
Instrument 3	Not Used	-	Instrument 19	Not Used	-
Instrument 4	Not Used	-	Instrument 20	Not Used	-
Instrument 5	Not Used	-	Instrument 21	Not Used	-
Instrument 6	Not Used	-	Instrument 22	Not Used	-
Instrument 7	Not Used	-	Instrument 23	Not Used	-
Instrument 8	Not Used	-	Instrument 24	Not Used	-
Instrument 9	Not Used	-	Instrument 25	Not Used	-
Instrument 10	Not Used	-	Instrument 26	Not Used	-
Instrument 11	Not Used	-	Instrument 27	Not Used	-
Instrument 12	Not Used	-	Instrument 28	Not Used	-
Instrument 13	Not Used	-	Instrument 29	Not Used	-
Instrument 14	Not Used	-	Instrument 30	Not Used	-
Instrument 15	Not Used	-	Instrument 31	Not Used	-
Instrument 16	Not Used	-	Instrument 32	Not Used	-

Parameter	Description
Instrument 1 to 32	Select the instrumentation parameter that is to be displayed for the specific
	Configurable Status Screen.

3.3.5 EVENT LOG

Display Options

All events are configured and viewed in the Event Log.

	Display Options	
	Module display	 Date and time Engine hours run
Parame	eter	Description
Module	Display	• Date and Time = The module displays what the Date and Time

lay	• Date and Time = The module displays what the Date and Time
	was when the <i>Event</i> was logged.
	• Engine Hours Run = The module displays what the Engine Hours
	was when the Event was logged.

Logged Events

Logged Events			
Log the following event	s to the event log	g	
Power-Up		Log Fuel Level	
ECU Lamps		Log Fuel Level At Rest	
Shutdown Alarms		Engine starts	
Electrical Trip Alarms		Engine stops	
Latched warnings		Application Switches	
Unlatched warnings		Generator Breaker Opened	
Maintenance Alarms		Generator Breaker Closed	

Parameter	Description		
Power-Up	= Power-Up events are not logged.		
	I = Power-Up events are logged when the DC Supply is applied to		
	the module.		
ECU Lamps	NOTE: ECU Alarms are only available when the module is configured to communicate to an engine's ECU/ECM over CANbus.		
	□ = The ECU (ECM) alarm lamps signals are not logged.		
Shutdown Alarms	\Box = Shutdown Alarms are not logged. $\overline{\mathbf{M}}$ = Shutdown Alarms are logged when the moment they activate		
Electrical Trip Alarms	$\Box = Chatacowin naume are not logged when the moment are y derivate.$		
	$\mathbf{\Sigma}$ = <i>Electrical Trip Alarms</i> are logged when the moment they activate.		
Latched Warnings	= Latched Warnings Alarms are not logged.		
	\mathbf{M} = Latched Warnings Alarms are logged when the moment they activate.		
Unlatched Warnings	= Unlatched Warnings Alarms are not logged.		
	☑ = Unlatched Warnings Alarms are logged when the moment they		
	activate.		
Maintenance Alarms	\Box = Maintenance Alarms are not logged.		
	\square = Maintenance Alarms are logged when the moment they activate.		

Parameter	Description	
Log Fuel Level	\Box = <i>Fuel Monitoring</i> events are not logged when the generator running. Fuel level alarms are still logged if the appropriate alarm category is logged.	
	running.	
Log Fuel Level at Rest	 □ = Fuel Monitoring events are not logged when the generator is at rest. Fuel level alarms are still logged if the appropriate alarm category is logged. ☑ = Fuel Monitoring events are logged when the generator is at rest. 	
Engine Starts	\Box = Engine Start events are not logged. \blacksquare = Engine Start events are logged when the generator successfully crank disconnects.	
Engine Stops	\Box = Engine Stop events are not logged. \blacksquare = Engine Stop events are when the Stopping Timer ceases.	
Application Switches	 = Application Switch events are not logged. = Application Switch events are logged when the application is switched between Single Set and Multi Set modes. 	
Generator Breaker Opened	 = Generator Breaker Open events are not logged. = Generator Breaker Open events are logged when the generator breaker is successfully opened. 	
Generator Breaker Closed	 Generator Breaker Closed events are not logged. Generator Breaker Closed events are logged when the generator breaker is successfully closed. 	

Logged Events (Single Set)

All Single Set events are configured and viewed in the Event Log.

Logged Events	(Single Set)
Mains Fail Mains Return	

Parameter	Description		
Mains Fail	\Box = Mains Fail events are not logged.		
	Image: Second		
	frequency rises above or falls below the configured trip levels for the		
	duration of the Mains Transient Delay timer.		
Mains Return	= Mains Return events are not logged.		
	$\mathbf{\Sigma}$ = Mains Return events are logged when the mains returns within		
	the configured Mains Voltage/Frequency range for both Transient		
	Delay Timer and the Return Delay Timer.		

Editing the Configuration

Logging Options

Logging Options
Engine DTC Logging Shutdowns Only

Parameter	Description
Always	When selected, DTCs are immediately logged upon occurrence
Never	Select to disable Engine DTC logging
Shutdowns and	When selected, Engine DTCs are logged when an ECU Shutdown or ECU
Warnings	Warning occurs, the timestamp for the DTC in the event log is that of the
	Shutdown or Warning
Shutdowns Only	When selected, Engine DTCs are logged when an ECU Shutdown occurs, the
	timestamp for the DTC in the event log is that of the Shutdown

3.3.6 DATA LOGGING

The Data Logging section is subdivided into smaller sections.

The module can record up to twenty parameters and is saved as a *Data Log File* to the module's internal memory or an external USB storage device. If 20 parameters were configured to be logged, each with a *Log Interval* of 1 second, the length of each *Data Log File* would be 6 hours and 21 minutes. This time is extendable as the length of each *Data Log File* varies upon the number of selected parameters and their configured *Log Interval*.

The module can store 128 *Data Log Files* to its internal memory. The number of *Data Log Files* increases when an external USB storage device is connected to the module's USB Host port. The increased number of *Data Log Files* is dependent upon the size of the USB storage device connected. When using the maximum size USB storage device of 16 GB, the number of *Data Log Files* is increased to 8200. This results in a total *Data Log* length of 46 weeks, 2 days, 6 hours, and 24 minutes (assuming 20 parameters were configured to be logged, each with a *Log Interval* of 1 second).

The *Data Logging* is viewed using the *Data Log Viewer* application, which is accessed from the DSE Configuration Suite PC Software under the *Tools* menu.

3.3.6.1 CONFIGURATION

Parameter	Description
Logged Data	Select the item required to be logged. Data is logged from a Specific Register, Alarms, Control, Instrumentation, or a Status item.
Log Interval	Select the logging interval of the data: 1 second to 24 hrs

3.3.6.2 **OPTIONS**

Data Log Options		
	Only Log When Engine is Running	
	Log to USB drive	
	Keep Oldest Data	

Parameter	Description
Only Log When	= The module logs data regardless of engine running state.
Engine is Running	$\mathbf{\Sigma}$ = The module only logs data when the engine is running.
Log to USB Drive	\Box = The module logs data to the module's internal memory.
	$\mathbf{\Sigma}$ = The module logs data to an external USB memory device connect to
	the USB host socket on the module.
Keep Oldest Data	\Box = When the logging memory is full, the module overwrites the oldest data
	first with the new data.
	\blacksquare = When the logging memory is full, the module stops recording new data.
3.4 **INPUTS**

The Inputs section is subdivided into smaller sections. Select the required section with the mouse.

Inputs Analogue Input Configuration Analogue Inputs **Digital Inputs** Virtual Inputs

3.4.1 ANALOGUE INPUT CONFIGURATION

Analogue Input	t Configuratio	on
ECU (ECM) Options	5	
Use Module to Mea Use Module to Mea	sure Oil Pressure sure Coolant Temp	Oil pressure is read from the ECU (ECM) perature Engine temperature is read from the ECU (ECM)
Input Configuration	n	
Analogue Input A Analogue Input B Analogue Input C Analogue Input D Analogue Input E Analogue Input F Analogue Input G	Oil Sensor Temperature Sensor Fuel Sensor Flexible Analogue Flexible Analogue Flexible Analogue	The section in which the analogue input is configured changes dependent on its function.
'Flexible Analog 'Digital Inp Oil/Tem	gue' selections are out' selections are o perature/Fuel selec	e configured on the 'Inputs/Analogue Inputs' pages configured on the 'Inputs/Digital Inputs' pages ctions are configured on the 'Engine' pages

ECU (ECM) Options

Parameter	Description
Use Module to	(Available only when the module is configured for connection to a CAN
Measure Oil	engine.)
Pressure	\Box = The measurements are taken from the ECU (ECM).
	$\mathbf{\Sigma}$ = The module ignores the CAN measurement and uses the analogue
	sensor input.
Use Module to	(Available only when the module is configured for connection to a CAN
Measure Coolant	engine.)
Temperature	\Box = The measurements are taken from the ECU.
	$\mathbf{\Sigma}$ = The module ignores the CAN measurement and uses the analogue
	sensor input.

Input Configuration

Parameter	Description
Analogue Input A	Select what the analogue input is to be used for:
5 1	Not Used: The analogue input is disabled
	Digital Input: Configured on the Inputs/Digital Inputs pages
	Flexible Analogue: Configured on the Inputs/Analogue Inputs pages
	Oil Sensor: Configured on the Engine pages
Analogue Input B	Select what the analogue input is to be used for:
	Not Used: The analogue input is disabled
	Digital Input: Configured on the Inputs/Digital Inputs pages
	Flexible Analogue: Configured on the Inputs/Analogue Inputs pages
	Temperature Sensor: Configured on the Engine pages
Analogue Input C	Select what the analogue input is to be used for:
	Not Used: The analogue input is disabled
	Digital Input: Configured on the Inputs/Digital Inputs pages
	Flexible Analogue: Configured on the Inputs/Analogue Inputs pages
	Fuel Sensor: Configured on the Engine pages
Analogue Input D	Select what the analogue input is to be used for:
	Not Used: The analogue input is disabled
	Digital Input: Configured on the Inputs/Digital Inputs pages
	Flexible Analogue: Configured on the Inputs/Analogue Inputs pages
Analogue Input E	Select what the analogue input is to be used for:
	Not Used: The analogue input is disabled
	Digital Input: Configured on the Inputs/Digital Inputs pages
	Flexible Analogue: Configured on the Inputs/Analogue Inputs pages
Analogue Input F	Select what the analogue input is to be used for:
	Not Used: The analogue input is disabled
	Digital Input: Configured on the Inputs/Digital Inputs pages
	Flexible Analogue: Configured on the Inputs/Analogue Inputs pages
Analogue Input G	Select what the analogue input is to be used for:
	Not Used: The analogue input is disabled
	Digital Input: Configured on the Inputs/Digital Inputs pages
	Flexible Analogue: Configured on the Inputs/Analogue Inputs pages

Configuring an Analogue Input as a Digital Input

Analogue inputs are configured as a Digital Input.

Select the required Analogue Input from A to G

Analogue out G Select the corresponding Analogue Input on the Digital Input page.

Action Warning Always Analogue Input A (Digital) Activation Delay 0s Analogue Input B (Digital) Activation Delay 0s Analogue Input B (Digital) The Analogue Input is not configured as a Digital Input To reconfigure, use the 'Analogue Input Configuration' page Analogue Input C (Digital) The Analogue Input is not configured as a Digital Input To reconfigure, use the 'Analogue Input Configuration' page Analogue Input C (Digital) The Analogue Input is not configured as a Digital Input To reconfigure, use the 'Analogue Input Configuration' page Analogue Input C (Digital) The Analogue Input is not configured as a Digital Input To reconfigure, use the 'Analogue Input Configuration' page

3.4.2 ANALOGUE INPUTS

NOTE: An analogue input is only configurable as a flexible sensor if it has been configured as *Flexible Analogue*. Refer to section 3.4.1 entitled *Analogue Input Configuration* in this document for further details.

Analogue Inputs

Sensor Description

Sensor Description	
Sensor Name	Flexible Sensor A

Parameter	Description
Sensor Name	Enter the Sensor Name, this text is shown on the module display when viewing
	the instrument.

Input Type

put Type				
Not Used	•	Create		

Parameter	Description
Input Type	Select the sensor type and curve from a pre-defined list or create a user-
	defined curve.
	Available sensor types:
	Not Used: The input is not used
	<i>Current:</i> for sensors with maximum range of 0 mA to 20 mA
	Resistive: for sensors with maximum range of 0 Ω to 3 k Ω
	Voltage: for sensors A-D with maximum range of 0 V to 10 V
	Voltage: for sensors E-G with maximum range of 0 V to 32 V
	Available parameters to be measured:
	Pressure: The input is configured as a pressure sensor
	Percentage: The input is configured as a percentage sensor
	Temperature: The input is configured as a temperature sensor
	User Defined: Using the curve editor

Sensor Fault Alarm

Sensor Fault Alarm	
Enable Alarm	
Alarm String	Flexible Sensor A Fault

Parameter	Description
Enable Alarm	= The Alarm is disabled.
	☑ = The Sensor Fault Alarm is enabled once a Sensor Alarm is enabled.
Alarm String	The text that is displayed on the module's LCD when the Sensor Fault Alarm
_	activates.

Sensor Alarms

Sensor Alarms	
Alarm Arming	Always 💌
Low Alarm Enable Action	·
Low Alarm	÷ 16 %
Low Pre-alarm Enable	
Low Pre-alarm Trip	<u>32</u> %
Low Pre-alarm Return	n 🗘 48 %
Low Alarm String	Flexible Sensor A Low
High Pre-alarm Enable	
High Pre-alarm Retu	m 🗘 80 %
High Pre-alarm Trip	\$ 96 %
High Alarm Enable	[] [
Action	
High Alarm	<u> 128</u> %
High Alarm String	Flexible Sensor A High

Parameter	Description
Alarm Arming	A NOTE: For details of these, see section 6 entitled <i>Alarm Arming</i> for more information.
	Select when the alarm generated by the analogue input becomes active: Always From Safety On From Starting
Low Alarm	= The Alarm is disabled.
Enable	$\mathbf{\Sigma}$ = The Low Alarm activates when the measured quantity drops below the Low Alarm setting.
Low Alarm Action	NOTE: For details of these, see section 5 entitled <i>Alarm Types</i> for more information.
	Select the type of alarm required from the list: <i>Electrical Trip</i> <i>Shutdown</i>

Parameter	Description
Low Pre-Alarm	= The Pre-Alarm is disabled.
Enable	\mathbf{V} = The Low Pre-Alarm is active when the measured quantity drops below the
	Low Pre-Alarm Trip setting. The Low Pre-Alarm is automatically reset when
	the measured quantity rises above the configured Low Pre-Alarm Return level.
Low Alarm String	The text that is displayed on the module's LCD when the Low Alarm or Low
	Pre-Alarm activates.
High Pre-Alarm	= The Pre-Alarm is disabled.
Enable	$\mathbf{\overline{M}}$ = The High Pre-Alarm is active when the measured quantity rises above the
	High Pre-Alarm Trip setting. The High Pre-Alarm is automatically reset when
	the measured quantity falls below the configured High Pre-Alarm Return level.
High Alarm	= The Alarm is disabled.
Enable	\blacksquare = The High Alarm is active when the measured quantity rises above the
	High Alarm setting.
High Alarm Action	
	ANOTE: For details of these, see the section 5 entitled <i>Alarm Types</i>
	for more information.
	Select the type of alarm required from the list:
	Electrical Trip
	Shutdown
High Alarm String	The text that is displayed on the module's LCD when the High Alarm or High
	Pre-Alarm activates.

3.4.2.1 CREATING / EDITING THE SENSOR CURVE

While the *DSE Configuration Suite* holds sensor specifications for the most used resistive sensors, occasionally it is required that the module be connected to a sensor not listed by the *DSE Configuration Suite*. To aid this process, a sensor curve editor is provided.

When creating a new sensor curve the measurement quantity and measured parameter are required.

Select Axis Units				
X-Axis (Measured Quantity)	Resistive (Ohms)	•		Click to begin creating
<u>Y</u> -Axis	Temperature (°C)	• 		the new sensor curve
		<u>O</u> K	<u>C</u> ancel	

Parameter	Description
X-Axis	Select the electrical quantity that the sensor outputs.
(Measured	Current (mA): For sensors that output current within a range 0 mA to 20 mA
Quantity)	Voltage (0-10 Volts): For sensors that output voltage within a range of 0 V to 10 V
	Voltage (0-32 Volts): For sensors that output voltage within a range of 0 V to 32 V
	Resistive (Ohms): For sensors that output a resistance within a range 0 Ω to 3K Ω
	on Analogue Input A and 0 to 5K Ω on Analogue Inputs B to G
Y-Axis	Select the parameter that is being monitored by the sensor.
	Temperature (°C): For sensors that measure temperature.
	Pressure (Bar): For sensors that measure pressure.
	Percentage (%): For sensors that measure percentage.

Sensor curve creation and editor descriptions are continued overleaf...

Change Axis Range

NOTE: The difference between the Minimum and Maximum values on the X and Y axis must exceed the noted limits.

3.4.3 DIGITAL INPUTS

The *Digital Inputs* section is subdivided into smaller sections. Select the required section with the mouse.

Digital Inputs
Digital Inputs A - C
Digital Inputs D - F
Digital Inputs G - I
Analogue Inputs A - C
Analogue Inputs D - F
Analogue Input G

3.4.3.1 DIGITAL INPUTS

Digital Inputs	A - C		\frown	\frown	\mathbf{r}
Digital Input A		(As this exan	nple	
Function Polarity Action Arming LCD Display Activation Delay	Remote Start On Load Close to Activate		shows a pre function, the parameters greyed out a are not appl	adefined ase are as they icable.	
Digital Input B					
Function	User Configured 👻	-			
Polarity	Close to Activate				
Action	Shutdown 👻				
Arming	Always 👻				
LCD Display	Digital Input B				
Activation Delay	0s 📘				

Deveneter	Description
Parameter	Description
Function	Select the input function to activate when the relevant terminal is energised.
	See section 3.4.3.3 entitled Input Functions for details of all available functions
Delerity	
Polarity	Select the digital input polarity:
	<i>Close to Activate:</i> the input function is activated when the relevant terminal is
	connected.
	Open to Activate: the input function is activated when the relevant terminal is
	Cher to Activate. The input function is activated when the relevant terminal is
	alsconnected.
Action	NOTE: For details of these, see section 5 entitled <i>Alarm Types</i> for more information
	Select the type of alarm required from the list:
	Electrical Trip
	Indication
	Shutdown
	Warning
	ر و

Parameter	Description
Arming	A NOTE: For details of these, see the section 6 entitled <i>Alarm Arming</i> for more information.
	Select when the alarm generated by the input becomes active: Active from Mains Parallel Always From Safety On From Starting Never
LCD Display	The text that is displayed on the module's LCD when the input activates and generates an alarm.
Activation Delay	This is used to give a delay on acceptance of the input. Useful for liquid level switches or to mask short term operations of the external switch device.

3.4.3.2 ANALOGUE INPUTS

NOTE: An analogue input is only configurable as a digital input if it has been configured as *Digital Input*, refer to section 3.4.1 entitled *Analogue Input Configuration* in this document for further details.

Analogue In	outs		
Analogue Input	A (Digital)		
Function	User Configured	•	
Polarity	Close to Activate	•	
Action	Warning	•	
Arming	Always	-	
LCD Display	Analogue Input A (Digital)		
Activation Delay	0s		
Analagua Ingut	D (Disital)		
Analogue input	B (Digital)		
The To rec	Analogue Input is not co onfigure, use the 'Analog	nfigured as a Digital Input ue Input Configuration' page	

Parameter	Description
Function	Select the input function to activate when the relevant terminal is energised.
	See section 3.4.3.3 entitled <i>Input Functions</i> for details of all available functions
Polarity	Select the digital input polarity:
,	Close to Activate: the input function is activated when the relevant terminal is
	connected.
	Open to Activate: the input function is activated when the relevant terminal is
	disconnected.
Action	
	ANOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> for
	more information.
	Select the type of alarm required from the list:
	Electrical Trip
	Indication
	Shutdown
	Warning
Arming	
	A NOTE: For details of these, see the section 6 entitled <i>Alarm Arming</i>
	for more information.
	Select when the alarm generated by the input becomes active:
	Active from Mains Parallel
	Always
	From Safety On
	From Starting
	Never
LCD Display	The text that is displayed on the module's LCD when the input activates and
	generates an alarm.
Activation Delay	This is used to give a delay on acceptance of the input. Useful for liquid level
	switches or to mask short term operations of the external switch device.

3.4.3.3 INPUT FUNCTIONS

Where a digital input is NOT configured as "user configured", a selection is made from a list of predefined functions. The selections are as follows:

Under the scope of IEEE C37.2, function numbers are also used to represent functions in microprocessor devices and software programs. Where the DSE input functions are represented by IEEE C37.2, the function number is listed below.

Function	Description
User Configured	This input is used to generate a custom alarm using the configured
	Action, Arming and LCD Display items.
Air Flap Closed	This input is used to connect to the air flap switch contacts. This gives an
Auxiliary	immediate shutdown in the event of the air flap being closed. It also
IEEE C37.2 - 3 Checking or	prevents the generator from being restarted if the air flap has not been
Interlocking Relay	reset following an over-speed shutdown.
Alarm Mute	This input is used to silence the audible alarm from an external source,
	such as a remote mute switch.
Alarm Reset	This input is used to reset any latched alarms from a remote location. It is
	also used to clear any latched warnings which may have occurred (if
	configured) without having to stop the generator.
Alt Config 1 – 5	These inputs are used to instruct the module to follow the relevant
Select	alternative configuration settings instead of the main configuration
	settings.
AMSC Alarms Inhibit	
(Multi Set)	ANOTE: The AMSC Old Version alarm is not inhibited when this
	input is active.
	If this input is active, all AMSC failure related alarms are inhibited from
	activating even if the fault is active.
Auto Restore Inhibit	In the event of a Single Set Controller detecting a mains failure, the
(Single Set)	generator is instructed to start and take load. When the Single Set
	controller detects the mains has returned the module continues to run the
	generator on load until the Auto Restore Inhibit input is removed. This
	input allows the controller to be fitted as part of a system where the
	restoration to mains is controlled remotely, by an automated or by onsite
Auto Dun Inhihit	
Auto Run Innibit	A NOTE: This input does not provent the generators starting and
Interlocking Relay	running in Manual mode
	I his input is used to provide an over-ride function to prevent the
	controller from starting and/or running the generator in the event of any
	active start signal. If this input is active the module does not give a start
	command to the generator. If the generator is furning when this signal is
	apparator is part of a load demand scheme the load would be ramped off
	first which may cause another generator to start if one is available. If this
	input signal is then removed the controller operates normally and will
	respond to a start signal
	This input does not prevent starting of the generator in manual mode.
Auto Start Inhibit	
IEEE C37.2 - 3 Checking Or	ONOTE: This input does not prevent the generators starting in
Interlocking Relay	Manual mode.
	This input is used to provide an over-ride function to prevent the
	controller from starting the generator in the event of a Multi Set
	Controller/Mains out of limits condition occurring. If this input is active
	and a Multi Set Controller signal/Mains failure occurs the module does
	not give a start command to the generator. If this input signal is then
	removed, the controller operates as if a Multi Set Controller/Mains failure
	has occurred, starting, and loading the generator.

Function	Description
	If the 'Auto start Inhibit' signal becomes active when the generators are
	running this input is ignored and will not stop because of it.
	This input does not prevent starting of the Generator Bus in MANUAL
	mode.
Auxiliary Mains Fail	The module monitors the incoming single or three phase supply for Over
(Single Set)	voltage. Under Voltage. Over Frequency or Under frequency. It may be
	required to monitor a different mains supply, or some aspect of the
	incoming mains not monitored by the controller. If the devices providing
	this additional monitoring are connected to operate this input, the
	controller operates as if the incoming mains supply has fallen outside of
	limits, the generator is instructed to start and take the load. Removal of
	the input signal causes the module to act if the mains has returned to
	within limits providing that the mains sensing also indicates that the
	mains is within limits.
Clear Mains	This input is used to reset the module following a Mains Decoupling
Decoupling Alarms	Alarm (ROCOF, vector shift, Mains Voltage Alarm, Mains Frequency
1 3	Alarm). The input must switch from inactive to active to reset the trip, it is
	not to be left permanently active.
Coolant Temperature	This input is used to give a Coolant Temperature High shutdown from a
Switch	digital normally open or closed switch. It allows coolant temperature
IEEE C37.2 – 26 Apparatus	protection.
Thermal Device	The sustain design on provides this suitch (not DOE) as its leastion varies
Disable Protections	I ne system designer provides this switch (not DSE), so its location varies
	depending upon manufacturer, nowever it normally takes the form of a
	key operated switch to prevent inadvertent activation. Depending upon
	When eating and the module is switchly configured (as a costion 2.49.4
	when active, and the module is suitably configured (see section 3.18.1
	entitied Advanced Options) this prevents the engine being stopped upon
	Childal alarm (Sometimes called Battle-Short Mode, War Mode of Run to
DRE Auto Bogon	Destruction).
DFF Auto Regen	nus input is used to overnue the ECO (ECIVI) function and prevent the
	This input is used to override the ECU (ECM) function and activate the
Regeneration	regeneration of the diesel particulate filter
DPF Regeneration	This input is used to stop a manual regeneration from occurring
Interlock	
Droop ECU Enable	This input is used to enable the droop function on a supported ECU/ECM
	that is fitted to the engine. It is not to be confused with Governor or AVR
	droop.
Duty Select (Multi Set)	This input is used to force the appropriate set to become the duty set
IEEE C37.2 - 10 Unit	when using a load demand scheme. Irrespective of the priority number
sequence switch	configured in the module, it will be forced to become the priority set. This
	allows for manual duty selection, overriding the automatic system
	normally used by the modules.
EJP1	For the French EJP (Effacement Jours de Pointe) tariff system.
	This input is functionally identical to <i>Multi Set Controller Off Load.</i>
	When this input is active, operation is like the 'Multi Set Controller on
	load' function except that the generator is not instructed to take the load.
	This function is also used where an engine only run is required e.g., for
	exercise.
EJP2	For the French EJP (Effacement Jours de Pointe) tariff system.
	This input is functionally identical to Multi Set Controller On Load.
	In auto mode, the module performs the start sequence and transfers load
	to the generator.
	In Manual mode, the load is transferred to the generator if the engine is
	already running, however in manual mode, this input does not generate
	start/stop requests of the engine.

Function	Description
Enable AVR Digital	This input is used to enable the AVR digital droop control using the
Droop (Multi Set)	G8600 controller (while running in KVAr share+droop) in Reactive Load
	Control Mode.
Enable Governor	This input is uses system frequency to manage load share instead of
Digital Droop (Multi	AMSC on a supported ECU/ECM that is fitted to the engine.
Set)	
Enable Power Mode 1	This input is used to instruct the module to switch to Power Mode 1
Constant Power	Constant Power (Default)
(Default)	
Enable Power Mode 2	This input is used to instruct the module to switch to <i>Power Mode 2</i>
Frequency-Power	Frequency-Power
Enable Power Mode 3	This input is used to instruct the module to switch to <i>Power Mode 3</i>
Voltage-Power	Voltage-Power
Enable Reactive Mode	This input is used to instruct the module to switch to <i>Reactive Mode 1</i>
1 Constant Power	Constant Power Factor
Factor	
Enable Reactive Mode	This input is used to instruct the module to switch to <i>Reactive Mode 2</i>
2 Voltage-Reactive	Voltage-Reactive Power
Power	
Enable Reactive Mode	This input is used to instruct the module to switch to <i>Reactive Mode 3</i>
3 Power-Power Factor	Power-Power Factor
Enable Reactive Mode	This input is used to instruct the module to switch to <i>Reactive Mode 4</i>
4 Constant Reactive	Constant Reactive Power (Default)
Power (Default)	
External Panel Lock	
	AANOTE: External control sources (i.e., Simulate Start Button) are
	not affected by the external panel lock input and continue to
	operate normally.
	This input is used to provide security to the installation
	This input is used to provide security to the installation.
	When the External Panel lock input is active, the module does not
	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the
	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then
	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is
	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel</i>
	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel</i> <i>configuration access is not possible while the system lock is active</i>).
Fuel Tank Bund Level	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel</i> <i>configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a
Fuel Tank Bund Level High	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel</i> <i>configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is experimentation access is not possible while the system lock is active).
Fuel Tank Bund Level High	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel</i> <i>configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configurable under the <i>Engine Protections</i> page in the module
Fuel Tank Bund Level High	 When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration.
Fuel Tank Bund Level High Generator Closed	 When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contractor or circuit breaker switching status. It must be
Fuel Tank Bund Level High Generator Closed Auxiliary	 When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay	 When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems.
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay	 When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems.
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay	 When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems.
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit	 When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems.
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit	 When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This input only operates to control the generator-
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit Breaker	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This input only operates to control the generator-switching device if the module load switching logic is attempting to
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit Breaker	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This input only operates to control the generator-switching device if the module load switching logic is attempting to load the generator. It does not control the generator switching
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit Breaker	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This input only operates to control the generator-switching device if the module load switching logic is attempting to load the generator. It does not control the generator switching device when the Mains supply is on load.
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit Breaker	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This input only operates to control the generator-switching device if the module load switching logic is attempting to load the generator. It does not control the generator switching device when the Mains supply is on load.
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit Breaker	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This input only operates to control the generator-switching device if the module load switching logic is attempting to load the generator. It does not control the generator switching device when the Mains supply is on load.
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit Breaker	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This is a required input. MOTE: This input only operates to control the generator-switching device if the module load switching logic is attempting to load the generator. It does not control the generator switching device when the Mains supply is on load. This input is used to prevent the module from loading the generator. If the generator. Removing the input allows the generator to be
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit Breaker	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This is a required input. MOTE: This input only operates to control the generator-switching device if the module load switching logic is attempting to load the generator. It does not control the generator switching device when the Mains supply is on load. This input is used to prevent the module from loading the generator. If the generator. Removing the input allows the generator to be loaded again.
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit Breaker	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This input only operates to control the generator-switching device if the module load switching logic is attempting to load the generator. It does not control the generator switching device when the Mains supply is on load. This input is used to prevent the module from loading the generator. If the generator. Removing the input allows the generator to be loaded again.
Fuel Tank Bund Level High Generator Closed Auxiliary IEEE C37.2 - 3 Checking or Interlocking Relay Generator Load Inhibit IEEE C37.2 - 52 AC Circuit Breaker	When the External Panel lock input is active, the module does not respond to operation of the Mode select or Start buttons. This allows the module to be placed into a specific mode (such as Auto) and then secured. The operation of the module is not affected, and the operator is still able to view the various instrumentation pages etc. (<i>Front panel configuration access is not possible while the system lock is active</i>). This input is used to provide protection against fuel leakage, where a level switch is fitted to the fuel tank bund. The action for this alarm is configuration. This input is used to provide feedback to allow the module to give true indication of the contactor or circuit breaker switching status. It must be connected to the generator load switching device auxiliary contact required in all parallel capable systems. MOTE: This input only operates to control the generator-switching device if the module load switching logic is attempting to load the generator. It does not control the generator switching device when the Mains supply is on load. This input is used to prevent the module from loading the generator. If the generator. Removing the input allows the generator to be loaded again.

Function	Description
Generator Load Inhibit	This input is used to prevent the module from loading the generator. If
With Ramping	the generator is already on load, activating this input causes the
	generator to be unloaded, the power will be ramped off if there is another
	supply available. Removing the input allows the generator to be loaded
	again.
Idle Running	This input instructs the module to give a <i>Run at Idle speed</i> command to
IEEE C37.2 – 18	the engine either via an output configured to Idle Running or by data
Accelerating or Decelerating	commands when used with supported electronic engines.
Inhibit Retransfer To	This input prevents the load from being transferred back to the Mains
Mains	supply, only in the event of the Generator Bus failure.
(Single Set)	
IEEE 37.2 - 3 Checking or interlocking relay	
Inhibit Scheduled Run	This input is used to provide a mean of disabling a scheduled run
IEEE C37.2 – 3 Checking Or	
Interlocking Relay	
Lamp Test	This input is used to provide a test facility for the front panel indicators
	fitted to the module. When the input is activated, all LEDs illuminate.
Leave AMSC Link	This input causes the module to disconnect from the AMSC link without
	triggering alarms in other modules. This input only works when the
	module is in Stop Mode with the engine stationary. If the engine is
	running when it is activated, it will have no effect.
Load Share Inhibit	This input disables the kW & k var share control when in parallel
Low Fuel Level Switch	This input is used to allow feedback for low fuel level.
IEEE C37.2 - 71 Liquid Level	
Switch	
Main Config Select	This input is used to select the <i>Main</i> configuration when <i>Alternative</i>
	Configurations are enabled.
Mains Closed Auxiliary	This input is used to provide feedback to allow the module to give true
(Single Set)	indication of the contactor or circuit breaker switching status. It is
	connected to the mains load switching device auxiliary contact.
	Incorrect application of this signal triggers an alarm and is required for
	synchronising.
	ANOTE: This is a required input.
Mains Load Inhibit	
(Single Set)	ANOTE: This input only operates to control the mains switching
IEEE C37.2 - 3 Checking or	device if the module load switching logic is attempting to load the
Interlocking Relay	mains. It does not control the mains switching device when the
	generator is on load.
	This input is used to provent the medule from loading the mains supply. If
	the mains supply is already on load activating this input causes the
	medule to upleed the maine supply. Removing the input closes the
	to be loaded again
Maine Load Inhihit With	This input is used to provent the module from leading the mains supply if
Remains Load Infiliate With	a generator is surrently remains off load. If the mains supply is
Kamping (Single Set)	a generator is currently ramping on load. If the mains supply is already
	on load activating this input causes the module to unload the mains
Maina Darallal Mada	Supply. Removing the input allows the hand charing module on to how it
	This input is used to conligure the load-sharing module as to now it
(Multi Set)	operates when in parallel.
	to maintain equal chare of the lead between systems
	I to maintain equal share of the load between systems.
	in the <i>iviality Parallel iviole</i> input is active, the controller does not
	Lovel for Page Load or Fixed Export made with the Maine supply
	Nhan brooker control is act to Active On forset this inset to be
Ivianual Breaker Mode	when breaker control is set to Active On Input, this input is used to
Manual Postara	This is only applicable when the Auto Posters Inhibit function is active. It
Contact (Single Set)	inits is only applicable when the Auto Restore Initibili function is active. It
Contact (Single Set)	is used to mold on transfer back to the mains after a mains failure and

Function	Description				
	keep the generator on load. Transfer back to the mains supply is held off in <i>Auto mode</i> while the <i>Auto Restore Inhibit</i> input is present. Typically, a key switch provides this input with <i>spring return to closed</i> functionality.				
Oil Pressure Switch IEEE C37.2 – 63 Pressure Switch	A digital normally open or closed oil pressure switch gives this input. It allows low oil pressure protection.				
Paralleling Inhibit (Single Set)	This input is used to prevent the generator from running in parallel with the Mains supply. If the input becomes active while in parallel, then the transfer is completed and paralleling ends.				
Remote Start Dead Bus Synchronising (Multi Set)	A NOTE: For further details, refer to the section 3.18.1 entitled <i>Advanced Options</i> for more information.				
	This input is used to enable a Dead Bus Synchronising start and must be used in conjunction with another starting signal such as <i>Multi Set Controller on Load.</i>				
Remote Start in Island Mode (Single Set)	When in <i>Auto Mode</i> , the module performs the start sequence and transfer of the load to the generator. The mains breaker is left open, and the generator is to run in island mode. In <i>Manual Mode</i> , the load is transferred to the generator if the engine is already running, however in <i>Manual Mode</i> ; this input does not generate start/stop requests of the engine.				
Remote Start Off Load	If this input is active, operation is like the 'Multi Set Controller on load' function except that the generator is not instructed to take the load. This function is used where an engine only run is required e.g., for exercise.				
Remote Start On Load	When in auto mode, the module performs the start sequence and transfer of the load to the generator. In Manual mode, the load is transferred to the generator if the engine is already running, however in manual mode, this input does not generate start/stop requests of the engine.				
	ANOTE: In Manual Mode if push buttons are enabled this input will not close the breaker.				
Remote Start On Load Demand (Multi Set)	If this input is active, the load demand start up and shut down scheme is active when two or more generators are running in parallel. Upon activation, all sets start a race for the bus. The first available set closes onto the dead bus and the others synchronise to it. Once the sets are on load, they compare load levels and redundant sets commence a shutdown sequence and return to standby until the load level is such that they are required.				
Reset Electrical Trip	A NOTE: For further details, refer to the section 3.18.3 entitled <i>Reset Electrical Trip</i> for more information.				
	This input is used to enable the <i>Reset Electrical Trip</i> function when the module is configured to do so.				
Reset Maintenance Alarm 1	Provides an external digital input to reset the maintenance alarm 1				
Reset Maintenance Alarm 2	Provides an external digital input to reset the maintenance alarm 2				
Reset Maintenance Alarm 3	Provides an external digital input to reset the maintenance alarm 3				
Simulate Auto Button	NOTE: If a call to start is present when AUTO MODE is entered, the starting sequence begins. Call to Start comes from several sources depending upon module type and configuration and includes (but is not limited to): Multi Set Controller input present, Mains failure, Scheduled run, Auxiliary Mains failure input present, Telemetry start signal from remote locations.				

Function	Description
	This input mimic's the operation of the 'Auto' button and is used to
	provide a remotely located Auto mode push button.
Simulate Lamp Test /	This input is used to provide a test facility for the front panel indicators
Alarm Mute Button	fitted to the module. When the input is activated all LED's illuminate. The
	input also serves a second function, in that it also provides a mute signal
	to silence the audible alarm. The input is recognised by the module as
	though it was the Push button on the module itself being operated
Simulate Left	Simulates the modules mains close button. See Operation Manual (057-
Switchgear Button	323 G8600 ons) for further details
Simulate Mains	This function is provided to override the module's internal monitoring
Available (Single Set)	function of this input is active, the module does not reasond to the state
Available (Single Set)	of the incoming AC mains supply
Circulate Manual	of the incoming AC mains supply.
Simulate Manual	I his input mimic s the operation of the Manual button and is used to
Button	provide a remotely located Manual mode push button.
Simulate Mode Button	This input mimic's the operation of the Mode' button and is used to
	toggle Auto Mode (Multi Set) and both Auto and Test Mode (Single Set)
Simulate Right	Simulates the modules generator button. See Operation Manual (057-
Switchgear Button	323_G8600_ops) for further details.
Simulate Start Button	This input mimic's the operation of the 'Start' button and is used to
	provide a remotely located start push button.
Simulate Stop Button	This input mimic's the operation of the 'Stop' button and is used to
	provide a remotely located stop/reset push button.
Simulate Test On Load	This input mimics the operation of the 'Test' button and is used to provide
Button (Single Set)	a remotely located Test on load mode push button.
Speed Lower	This is operational in Manual Mode only when the breaker is open.
	On systems where internal relays are used to control the governor, this
	input (SW1) is used to decrease the speed. SW1 will be set once the
	breaker is closed.
Speed Raise	This is operational in Manual Mode only when the breaker is open.
	On systems where internal relays are used to control the governor, this
	input (SW1) is used to increase the speed. SW1 will be set once the
	breaker is closed.
Start Pause	This input is intended to be used to allow the generator start sequence to
IEEE C37.2 - 3 Checking or	commence, but not to complete. This feature is used with air start
Interlocking Relay	engines for example to give a controlled start sequence.
	The function operates such that if the 'Start pause' input is active and an
	engine start is commanded, the module performs its start sequence thus:
	The pre-heat output (if used) is activated for the duration of the pre-heat
	timer
	The Fuel output then is energised, and the module then enters a pause
	state - 'Awaiting clear to start' If the 'start pause' signal becomes inactive
	currently, then the module continues its normal start sequence
	The 'start pause' mode uses the 'manual crank limit' timer and if this
	expires during the 'Awaiting clear to start' state then a 'Fail to start' alarm
	is generated and the set shutdown
Stop and Panel Lock	Combined function input that instructs the module to enter STOP mode
	and perform the Panel Lock function
	Once the input is active, the module does not respond to operation of the
	mode coloct or start buttons
	The operator is still able to view the various instrumentation pages etc.
	Access to the Front Panel Editor is not possible while the Ston and
	Panel Lock is active)
Switch to Multi Sat	Once the input is active, the module anables the DSEC0600 application
	for Multi Set functionality
Switch to Single Cat	Dree the input is pative, the module anables the DSECCOCO and institution
Switch to Single Set	once the input is active, the module enables the DSEG8600 application
	I IOI SINGLE SET IUNCTIONALITY.

Function	Description				
Sync Locking Override	Once the input is active it enables sync lock without a command to close				
	the breaker.				
Telemetry Panel Lock	Once the input is active, the module does not respond to mode changes				
	or breaker control by telemetry including Scada and Scada Suite				
	Software (DSEG801x).				
	The operator is still able to control and view the various instrumentation				
	pages through the front panel buttons.				
Volts Lower	This is operational in Manual Mode only when the breaker is open.				
	On systems where internal relays are used to control the AVR, this input				
	is used to decrease the volts.				
Volts Raise					
	ANOTE: This input has no effect when using the internal				
	analogue system to control the AVR				
	This is operational in Manual Mode only when the breaker is open.				
	On systems where internal relays are used to control the AVR, this input				
	is used to increase the volts.				
Water in Fuel	Some engines are fitted with water separators, that have a switch				
	indicator for water detection.				
	This input is used to provide protection against high water content in the				
	fuel, where a switch is fitted to the fuel filter. The action for this alarm is				
	configurable under the Engine Protections page in the module				
	configuration.				

3.4.4 VIRTUAL INPUTS

The *Virtual Inputs* section is subdivided into smaller sections. Select the required section with the mouse.

Virtual Inputs			
Virtual Inputs 1 - 3			
Virtual Inputs 4 - 6			
Virtual Inputs 7 - 9			
Virtual Inputs 10 - 12			

3.4.4.1 VIRTUAL INPUTS

Virtual Inputs 1 - 3	3	
Virtual Input 1		
Enable Screen Control	2	
Name	Oil Sensor	
Gencomm Control	Disabled 👻	
Operation	Latched 👻	
Function	Alarm Mute 👻	
Polarity	Close to Activate 👻	
Action	None	
Arming	•	
Activation Delay	0s	
Virtual Input 2		
Enable Screen Control		
Name	Virtual Input 2	
Gencomm Control	Open 👻	
Operation	Latched 👻	
Function	User Configured 👻	
Polarity	Close to Activate 👻	
Action	Warning 👻	
Arming	Always	
Activation Delay	0s	_

Parameter	Description
Enable Screen	= Screen Control is disabled.
Control	☑ = Screen Control is enabled.
GenComm	Select the GenComm control type:
Control	Disabled: Not controlled by GenComm
	Open: Available for GenComm control regardless of GenComm password
	status
	Protected: GenComm config password must have been entered to control
Operation	Select the mode of Operation:
	Latched
	Momentary
Function	Select the input function to activate when the relevant terminal is energised. See
	section 3.4.3.3 for further information

Parameter	Description
Polarity	Select the Virtual Input polarity:
	Close to Activate
	Open to Activate
Action	A NOTE: For details of these, see the section 5 entitled <i>Alarm Types.</i>
	Select the type of alarm required from the list:
	Indication
	Shutdown
	Warning
Arming	A NOTE: For details of these, see section 6 entitled <i>Alarm Arming</i> .
	Select when the alarm generated by the input becomes active: Active from Mains Parallel
	Always
	From Safety On
	From Starting
	Never
Activation Delay	This is used to give a delay on acceptance of the input. Useful for liquid level
	switches or to mask short term operations of the external switch device.

NOTE: If the virtual input is configured as momentary any activation from the front panel will be stretched by 1 second after the button is pressed. It will appear to be continuously active if the button is pressed and held and is used to switch between Single Set and Multi Set. For a GenComm activation in Scada, the input is triggered when the Scada button is released, the input then remains active for 1 second. If the input is continuously triggered within 1 second of the previous trigger, then the input will appear to be continuously active.

3.5 OUTPUTS

The *Outputs* section is subdivided into smaller sections. Select the required section with the mouse.

3.5.1 DIGITAL OUTPUTS

Parameter	Description
Source	Select the output source to control the state of the output
	See section 3.5.3 entitled Output Sources for details of all available functions
Polarity	Select the digital output polarity:
-	De-Energise: When the output source is true, the output deactivates.
	Energise: When the output source is true, the output activates.

3.5.2 VIRTUAL LEDS

The virtual LEDs provide a configuration of 'status' items. These items are available for viewing on the module and seen in the SCADA section of the PC software, or read by third party systems (i.e., BMS or PLCs) using the Modbus protocol.

Virtual LEDs						
LED Configurati	on					
Show On Modu	le	Source		Pola	rity	Output Description
	LED 1	Not Used	-	Lit	-	LED 1
	LED 2	Not Used	-	Lit	+	LED 2
	LED 3	Not Used	-	Lit	+	LED 3
	LED 4	Not Used	-	Lit	-	LED 4
	LED 5	Not Used	-	Lit	-	LED 5
	LED 6	Not Used	-	Lit	-	LED 6
	LED 7	Not Used	-	Lit	-	LED 7
	LED 8	Not Used	-	Lit	-	LED 8
	LED 9	Not Used	-	Lit	-	LED 9
	LED 10	Not Used	-	Lit	-	LED 10
	LED 11	Not Used	-	Lit	-	
	LED 12	Not Used	-	Lit	-	
	LED 13	Not Used	-	Lit	-	
	LED 14	Not Used	-	Lit	-	
	LED 15	Not Used	-	Lit	-	
	LED 16	Not Used	-	Lit	-	
	LED 17	Not Used	-	Lit	-	
	LED 18	Not Used	-	Lit	-	
	LED 19	Not Used	-	Lit	-	
	LED 20	Not Used	-	Lit	+	

Parameter	Description
Show On Module	A NOTE: 10 virtual outputs are available on the module display.
	\Box = The LED is disabled on the module $\overline{\Box}$ = The LED is activated on Module
Source	Select the output source to control the state of the output See section 3.5.3 entitled <i>Output Sources</i> for details of all available functions
Polarity	Select the digital input polarity: <i>Lit:</i> When the output source is true, the virtual LED activates <i>Unlit:</i> When the output source is true, the virtual LED deactivates.
Output Description	Enter the description of the output to appear on the module screen.

3.5.3 OUTPUT SOURCES

The list of output sources available for configuration of the module digital outputs.

Under the scope of IEEE 37.2, function numbers are also used to represent functions in microprocessor devices and software programs. Where the DSE output functions is represented by IEEE 37.2, the function number is listed below.

Output Source	Activates	Is Not Active
Not Used	The output does not change state	(Unused).

3.5.3.1 ALARMS

Alarms	Output Source	Activates Is Not Active			
	Display Heater Fitted and ON	Active when the display heater is on.			
Alarms AMSC	AMSC Alarms	Active when the AMSC Alarms Inhibit digital			
Alarms AMSC	AMSC Data Error (Multi Set)	Indicates data error on F	Primary CAN bus		
Alarms AMSC	AMSC Data Error Redundant (Multi Set)	Indicates data error on F bus.	Redundant Link CAN		
Alarms AMSC	AMSC Failure	Indicates when the AMS on both MultiSet Comms	<i>C Failure</i> alarm is active (AMSC) Links.		
Alarms AMSC	AMSC Too Few Sets	Indicates that the number of modules connected on the MultiSet Comms (AMSC) bus is less than expected and lower than the Minimum Sets Required setting			
Alarms AMSC	Bus Sensing Failure	This alarm is active if another module in a connected segment is making the bus live and the local bus measurement is below the dead bus thresholds.			
Alarms AMSC	Invalid Units On AMSC (Multi Set)	Active when any AMSC versions are incompatible on either MultiSet Comms (AMSC) Links.			
Alarms AMSC	Spinning Capacity Not Reached	This output is activated when the load demand system does not have the capacity running as configured.			
Alarms AMSC	Spinning Reserve Not Reached	This output is activated when the load demand system cannot achieve the configured spinning reserve.			
Alarms Bus	Bus Not Live (Multi Set)	This output indicates that the generator bus remains 'dead' after closing the generator load breaker			
Alarms Bus	Bus Phase Rotation Alarm (Multi Set)	This output indicates that detected a phase seque	it the module has nce error on the bus.		
Alarms Common	Common Alarm	Active when one or more alarms (of any type) are active.The output is inactive when no alarms are present.			
Alarms Common	Common Electrical Trip	Active when one or more <i>Electrical Trip</i> alarms are active.	The output is inactive when no <i>Electrical Trip</i> alarms are active.		
Alarms Common	Common Shutdown	Active when one or more <i>Shutdown</i> alarms are active.			
Alarms Common	Common Warning	Active when one or more <i>Warning</i> alarms are active.			
Alarms Common	Mains Decoupling Combined Alarm	The Mains Decoupling Combined alarm is triggered by any of the mains decoupling alarms			

Alarms	Output Source	Activates	Is Not Active
		including during test mod	de. This output is active
		when any of the failure a	larms are triggered.
Alarms ECU	ECU (ECM) Data Fail	Becomes active when	Inactive when:
		no CANbus data is	 CANbus data is
		received from the ECU	being received
		after the safety delay	 The set is at rest
		timer has expired.	during the starting
			sequence before
			the safety delay
	ECIL (ECM) Shutdown	The engine ECU	Inactive when no
		(FCM) has indicated	Shutdown alarm from
		that a Shutdown alarm	the ECU (ECM) is
		is present.	present.
Alarms ECU	ECU (ECM) Warning	The engine ECU	Inactive when no
		(ECM) has indicated	Warning alarm from
		that a Warning alarm	the ECU (ECM) is
		is present.	present.
Alarms Engine	Air Flap Alarm	This output indicates tha	t the air-flap is closed;
		to operate it requires an	input configured as 'Air-
		switch.	the external air-flap
Alarms Engine	Battery High Voltage	This output indicates	Inactive when battery
	IEEE C37.2 – 59 DC	that a Battery Over	voltage is not High.
	Overvoltage Relay	voltage alarm has	
Alormo Engino	Potton (Low) (oltogo	Occurrea.	Inactive when bettery
Alaritis Erigine	IFFE C37 2 – 27 DC	that a Battery I Inder	voltage is not Low
	Undervoltage Relay	Voltage alarm has	voltage is not Low.
	Chaortonago rionaj	occurred.	
Alarms Engine	Charge Alternator	Active when the charge	alternator shutdown
	Failure Shutdown	alarm is active.	
Alarms Engine	Charge Alternator Failure Warning	Active when the charge a is active.	alternator warning alarm
Alarms Engine	Fail To Start	Becomes active if the se	t is not seen to be
	IEEE C37.2 - 48 Incomplete	running after the configu	rable number of start
	Sequence Relay	attempts.	
Alarms Engine	Fail To Stop	If the set is still running a	a configurable amount of
	Sequence Relav	time after it has been giv	en the stop command,
		This configurable amour	ve. It of time is the Fail to
		Ston Timer	
Alarms Engine	Fuel Level High Alarm	Active when the fuel leve	el high alarm is active.
Alarms Engine	Fuel Level High Pre-	Active when the fuel leve	el high pre-alarm
5	Alarm	(warning) is active.	0
Alarms Engine	Fuel Level Low Alarm	Active when the fuel leve	el low alarm is active.
Alarms Engine	Fuel Level Low Pre-	Active when the fuel leve	el low pre-alarm
	Alarm	(warning) is active.	
Alarms Engine	Fuel Sensor Fault	as being open circuit.	vel Sensor is detected
Alarms Engine	Fuel Tank Bund Level	Active when the digital in	nput configured for Fuel
	High	Tank Bund Level High is	active.
Alarms Engine	Fuel Usage Alarm	Active when the Fuel Us	age alarm becomes
	Switch	active.	
Alarms Engine	High Coolant	Active when the Coolant	Temperature exceeds
	Temperature Electrical	the configured High Coo	lant Temperature
	Trip	Electrical Trip level.	

Alarms	Output Source IEEE C37.2 – 26 Apparatus Thermal Device	Activates	Is Not Active
Alarms Engine	High Coolant Temperature Shutdown IEEE C37.2 – 26 Apparatus Thermal Device	Active when the <i>Coolant Temperature</i> exceeds the configured <i>High Coolant Temperature Shutdown</i> level.	
Alarms Engine	High Coolant Temperature Warning IEEE C37.2 – 26 Apparatus Thermal Device	Active when the <i>Coolant Temperature</i> exceeds the configured <i>High Coolant Temperature Warning</i> level.	
Alarms Engine	High Inlet Temperature Shutdown	Active when the Inlet T High Inlet Temperature	emperature exceeds the Alarm setting.
Alarms Engine	High Inlet	Active when the Inlet T	emperature exceeds the
Alarms Engine	Loss of Mag Pickup Signal	Active when the control signal from the magnet not gone open circuit.	ller senses the loss of tic pickup probe, but it has
Alarms Engine	Low Coolant Temperature IEEE C37.2 – 26 Apparatus Thermal Device	Active when the Coola below the Low Cooland setting.	nt Temperature falls t Temperature alarm
Alarms Engine	Low Oil Pressure Shutdown IEEE C37.2 - 63 Pressure Switch	Active when the Oil Pressure falls below the Low Oil Pressure Shutdown setting.	 Inactive when The set is stopped During starting sequence before the safety delay time has expired.
Alarms Engine	Low Oil Pressure Warning IEEE C37.2 - 63 Pressure Switch	Active when the Oil Pressure falls below the Low Oil Pressure Warning setting.	 Inactive when The set is stopped During starting sequence before the safety delay time has expired.
Alarms Engine	MPU Open Circuit	This output indicates th detected an open circu Pickup transducer circu	hat the module has it failure in the Magnetic uit.
Alarms Engine	Oil Pressure Sensor	Active when the Oil Pro	essure Sensor is detected
Alarms Engine	Over Speed Shutdown IEEE C37.2 – 12 Over Speed Device	Active when the Over active.	Speed Shutdown alarm is
Alarms Engine	Over Speed Warning IEEE C37.2 – 12 Over Speed Device	Active when the Over active.	Speed Warning alarm is
Alarms Engine	Overspeed Overshoot Alarm IEEE C37.2 – 12 Over Speed Device	Active when the Over active.	Speed Overshoot alarm is
Alarms Engine	Overspeed Overshoot Warning IEEE C37.2 – 12 Over Speed Device	Active when the Over Speed Overshoot Warning alarm is active	
Alarms Engine	Under Speed Alarm	Active when any of the alarm is active.	Underspeed Shutdown
Alarms Engine	Under Speed Warning	Active when the Under active.	speed Warning alarm is
Alarms Generator Current and Power	AVR Maximum Trim Limit Reached	Indicates that the analogue AVR output has reached 100%. This indicates a fault with the control of the AVR (including connection error),	

Alarms	Output Source	Activates	Is Not Active
		incorrect setting of SW2 has reached its maximu	, or that the alternator m capacity.
Alarms Generator	Combined Under and	Active when an Under-F	requency or Over-
Combined	Over Frequency Alarm	Frequency Shutdown alarm is active.	
Alarms Generator	Combined Under and	Active when an Under-F	Frequency or Over-
Combined	Warning	Frequency warning alarm is active.	
Alarms Generator Combined	Combined Under and Over Voltage Alarm	Active when an Under-V Shutdown alarm is active	<i>oltage</i> or Over-Voltage
Alarms Generator Combined	Combined Under and Over Voltage Warning	Active when an <i>Under-Voltage</i> or <i>Over-Voltage Warning</i> alarm is active.	
Alarms Generator Current and Power	Earth Fault Trip Alarm IEEE C37.2 – 51G or 51N Generator IDMT Earth Fault Relay	Active when the Earth Fault Protection Alarm is active.	
Alarms Generator	Fail to Synchronise IEEE C37.2 - 48 Incomplete Sequence Relay	Becomes active if the massive synchronise after the Fa	odule fails to <i>il to Sync</i> timer.
Alarms Generator	Generator Asymmetry High IEEE C37.2 – 59	Active when the Generator Asymmetry Alarm is active.	
Alarms Generator Load Switching	Generator Failed To Close	Active when the Genera input fails to become act	tor Closed Auxiliary tive after the Close
	IEEE C37.2 – 52B AC Circuit Breaker Position (Contact Open When Breaker Closed)	Generator Output or Clo Pulse becomes active. T "Fail To Close Delay" tim alarm.	se Generator Output The module counts the ner before activating the
Alarms Generator	Generator Failed to	This output source is intended to be used to	
Load Switching	Open IEEE C37.2 - 48 Incomplete Sequence Relay	indicate a failure of the generator contactor or breaker.	
Alarms Generator	Generator High	Active when the High Voltage Shutdown alarm	
Voltage	Voltage Alarm IEEE C37.2 – 59 AC Overvoltage Relay	is active.	
Alarms Generator	Generator High	Active when the High Vo	oltage Warning alarm is
Voltage	Voltage Warning IEEE C37.2 – 59 AC Overvoltage Relay	active	
Alarms Generator	Generator Low	Active when the	Inactive when
Voltage	Voltage Alarm IEEE C37.2 – 27 AC Undervoltage Relay	generator voltage falls below the <i>Low Voltage</i> <i>Alarm Trip</i> level.	 The set is stopped During starting sequence before the safety delay time
			nas expired
Alarms Generator	Generator Low	Active when the	Inactive when
Voltage	Voltage Warning	generator voltage falls	 The set is stopped
	IEEE C37.2 – 27 AC	below the Low Voltage	During starting
	Chacivollage Relay	Pre-Alarm Trip level.	sequence before
			has expired.
Alarms Generator	Generator Negative Sequence Voltage High IEEE C37.2 – 47 Phase-Sequence Or Phase	Active when the Generator Negative Sequence Voltage Alarm is active.	
Alarma Conorator	Balance Voltage Relay	Active when the concret	or frequency overede
	Frequency Alarm	the Over Frequency Shu	utdown Trip level.

Alarms	Output Source	Activates Is Not Active
	IEEE C37.2 – 81 Frequency Relay	
Alarms Generator Frequency	Generator Over Frequency Overshoot Alarm IEEE C37.2 – 81 Frequency Relay	Activates when the generator frequency exceeds the overshoot setting during the overshoot time.
Alarms Generator Frequency	Generator Over Frequency Overshoot Warning IEEE C37.2 – 81 Frequency Relay	Activates when the generator frequency exceeds the overshoot setting warning trip level during the overshoot time.
Alarms Generator Frequency	Generator Over Frequency Warning IEEE C37.2 – 81 Frequency Relay	Active when the generator frequency exceeds the Over Frequency Warning Trip level.
Alarms Generator	Generator Phase Rotation Alarm IEEE C37.2 – 47 Phase Sequence Relay	Active when the detected generator phase sequence is different than the configured <i>Generator Phase Rotation.</i>
Alarms Generator	Generator Positive Sequence Voltage Low IEEE C37.2 – 27 AC Undervoltage Relay	Active when the Generator Positive Sequence Shutdown alarm is active.
Alarms Generator Current and Power	Generator Reverse Power IEEE C37.2 – 32 Directional Power Relay	Active when the <i>Generator Reverse Power</i> alarm is active.
Alarms Generator Current and Power	Generator Unbalanced Current	This output is active and when the module has detected a phase generator sequence which is different from the configured generator phase rotation.
Alarms Generator Frequency	Generator Under Frequency Alarm	Active when any of the <i>Generator Under</i> <i>Frequency Shutdown</i> or <i>Electrical Trip</i> alarm are active.
Alarms Generator Frequency	Generator Under Frequency Warning	Active when the Generator Under Frequency Warning alarm is active.
Alarms Generator	Generator Zero Sequence Voltage High IEEE C37.2 – 47 Phase-Sequence Or Phase Balance Voltage Relay	Active when the <i>Generator Zero Sequence Alarm</i> is active.
Alarms Generator	Insufficient Capacity Available	Indicates that during parallel operation, it has been determined that the set(s) is (are) not capable of providing the power that they have been configured to deliver or reached the maximum generation capacity and more is required.
Alarms Generator Current and Power	kW Overload Alarm	Active when the measured kW is above the setting of the <i>kW overload alarm</i> values. Used to give alarms on overload, control a dummy load breaker or for load shedding functionality.
Alarms Generator Current and Power	kW Overload Warning	Active when the kW level exceeds the Overload Warning Trip setting for longer than the configured Delay time.
Alarms Generator Frequency	Loading Frequency Not Reached	Active when the generator frequency has not reached the configured <i>Loading Frequency</i> during the starting process.

Alarms	Output Source	Activates	Is Not Active
Alarms Generator	Loading Voltage Not	Active when the generat	or voltage has not
Voltage	Reached	reached the configured I	Loading Voltage during
_		the starting process.	
Alarms Generator	Low kW Load	Active when the kW leve	I falls below configured
Current and Power		Low Load alarm.	
Alarms Generator	No Loading Command	This output indicates that the module is not	
Load Switching	_	calling for the	
_		generator load switch to	be closed. When the
		module closes the gener	ator load switch, this
		output becomes inactive	
Alarms Generator	Out of Sync	Indicates that the out of	s <i>ync</i> alarm has been
		triggered.	
Alarms Generator	Out Of Sync	Indicates that the Generation	ator is not in sync with
	Generator (Single Set)	the bus after the generat	or switchgear has
		closed in parallel.	
Alarms Generator	Over Current IDMT	Active when the Over Cu	<i>urrent IDMT</i> alarm is
	Alarm	active.	
Alarms Generator	Over Current	Active when the Over Cu	urrent Immediate
	Immediate Warning	Warning alarm is active.	
Alarms Generator	Short Circuit	This output indicates tha	t the module has
	Generator	detected a short circuit o	on the generator output.
Alarms Generator	Starting Alarm	This output is used to su	pply an external
		sounder with a signal that	at the engine is about to
		start. The output is active	e after the start delay
		time, during the pre-heat	delay (if used) and
	-	continues until the set st	arts.
Alarms Mains	Combined Mains	Active when the mains supply is out of limits OR	
	Failure (Single Set)	the input for Auxiliary Ma	ains Failure is active.
Alarms Mains	Fault Ride Through	Becomes active during	Becomes inactive
	Event	a Fault Ride Through	when there is no Fault
		event, the module	Ride Through event.
		generates a warning	
Alarma Maina	Maina Aaymmatry	Active when the Maine A	avenetry Alarmia
	High (Single Set)	Active when the Mains A	symmetry Alarmis
	$\frac{1}{1}$	active.	
	Overvoltage Relay		
Alarms Mains	Mains Decoupling	This output indicates tha	t the relevant Mains
	High Frequency Stage	decoupling high frequent	cy alarm has been
	1,2	triggered.	
Alarms Mains	Mains Decoupling	This output indicates tha	t the relevant Mains
	High Voltage Stage	decoupling high voltage	alarm has been
	1,2	triggered.	
Alarms Mains	Mains Decoupling Low	This output indicates tha	t the relevant Mains
	Frequency Stage 1,2	decoupling low frequenc	y alarm has been
		triggered.	
Alarms Mains	Mains Decoupling Low	This output indicates that	t the relevant Mains
	Voltage Stage 1,2	decoupling low voltage a	llarm has been
		triggered.	
Alarms Mains	Mains Failed To Close	This output indicates the	mains breaker failed to
Load Switching	(Single Set)	close.	
Alarms Mains	Mains Failed to Open	This output indicates the	mains breaker failed to
Load Switching	(Single Set)	open.	
Alarms Mains	Mains Failure (Single	The output indicates that	t one or more of the
	Set)	module's sources of dete	ermining mains failure is
	Relav	active.	
	IEEE C37.2 – 27 AC		
	Undervoltage Relay		

Alarms	Output Source	Activates Is Not Active
	IEEE C37.2 – 59 AC Overvoltage Relay	
Alarms Mains	Mains High Frequency (Single Set) IEEE C37.2 -81 Frequency Relay	Active when the mains frequency exceeds the <i>High Frequency</i> setting.
Alarms Mains	Mains High Voltage (Single Set) IEEE C37.2 – 59 AC Overvoltage Relay	Active when the mains voltage exceeds the <i>High Voltage</i> setting.
Alarms Mains	Mains Low Frequency (Single Set) IEEE C37.2 -81 Frequency Relay	Active when the mains frequency falls below the <i>Low Frequency</i> setting.
Alarms Mains	Mains Low Voltage (Single Set IEEE C37.2 – 27 AC Undervoltage Relay	Active when the mains voltage falls below the <i>Low Voltage</i> setting.
Alarms Mains	Mains Negative Sequence Voltage High (Single Set) IEEE C37.2 – 47 Phase-Sequence Or Phase Balance Voltage Relay	Active when the Mains Negative Sequence Voltage Alarm is active.
Alarms Mains	Mains Phase Rotation Alarm (Single Set) IEEE C37.2 – 47 Phase-Sequence Or Phase Balance Voltage Relay	Active when the detected mains phase sequence is different than the configured <i>Mains Phase Rotation.</i>
Alarms Mains	Mains Positive Sequence Voltage Low (Single Set) IEEE C37.2 – 47 Phase-Sequence Or Phase Balance Voltage Relay	Active when the Mains Positive Sequence Alarm is active.
Alarms Mains	Mains ROCOF	Indicates that the ROCOF protection (mains decoupling) has triggered.
Alarms Mains	Mains Vector Shift	Indicates that the Vector Shift protection (mains decoupling) has triggered.
Alarms Mains	Mains Zero Sequence Voltage High (Single Set) IEEE C37.2 – 47 Phase-Sequence Or Phase Balance Voltage Relay	Active when the Mains Zero Sequence Alarm is active.
Alarms Mains	Out Of Sync Mains (Single Set)	Indicates that the Mains is not in sync with the Generator after the Mains switchgear has closed in parallel with the generator.
Alarms Maintenance	Combined Maintenance Alarm	Active when any of the maintenance alarm is active.
Alarms Maintenance	Maintenance Alarm 1, 2 or 3 Due	Active when the relevant maintenance alarm is due.
Alarms Misc	Emergency Stop IEEE C37.2 – 5 Stopping Device	Active when the <i>Emergency Stop</i> input has been activated.
Alarms Module Inputs	Analogue Input A-G (Digital)	Active when the relevant analogue input, configured as digital input, is active.
Alarms Module Inputs	Flexible Sensor A to G Fault	Active when the relevant flexible sensor fault alarm is active. This function only works when the sensor is configured as resistive.
Alarms Module Inputs	Flexible Sensor A to G High Alarm	Active when the relevant flexible sensor high alarm is active.

Alarms	Output Source	Activates	Is Not Active
Alarms Module Inputs	Flexible Sensor A to G	Active when the relevant	t flexible sensor high
	High Pre-Alarm	pre-alarm is active.	-
Alarms Module Inputs	Flexible Sensor A to G	Active when the relevant	t flexible sensor low
	Low Alarm	alarm is active.	
Alarms Module Inputs	Flexible Sensor A to G	Active when the relevant	t flexible sensor low pre-
	Low Pre-Alarm	alarm is active.	

3.5.3.2 CONTROL

Control	Output Source	Activates	Is Not Active
Control ECU	ECU (ECM) Power	Used to switch an external relay to power the CANbus ECU (ECM). Exact timing of this outp is dependent upon the type of the engine ECU (ECM).	
Control ECU	ECU (ECM) Stop	Active when the DSE c that the CANbus ECU (ontroller is requesting (ECM) stops the engine.
Control Generator	Air Flap Relay	Normally used to control an air flap, this output becomes active upon an Emergency Stop or Over-speed situation.	Inactive when the set has come to rest.
Control Generator	Check Sync IEEE C37.2 – 25 Synchronising Or Synchronising Check Relay	Indicates that the intern has determined that the	ial check synchroscope supplies are in sync.
Control Generator	Coolant Cooler Control	Active by the <i>Coolant</i> C conjunction with the Cc Sensor.	<i>Sooler Control</i> in Inplant Temperature
Control Generator	Coolant Heater Control	Active by the <i>Coolant F</i> conjunction with the Co Sensor.	<i>leater Control</i> in olant Temperature
Control Generator	De-Excite Alternator (Multi Set)	Active during Dead Bus Synchronising start un the <i>Excitation Delay</i> timer expires.	
Control Generator	Droop Enable	Active when an input configured to <i>Droop</i> <i>Enable</i> is active or if <i>Droop Enable</i> has been activated in the module configuration (CANbus engine only).	
Control Generator	Energise To Stop	Normally used to control an <i>Energise to</i> <i>Stop</i> solenoid, this output becomes active when the controller wants the set to stop running.	Becomes inactive a configurable amount of time after the set has stopped. This is the <i>ETS hold time</i> .
Control Generator	Fan Control	Energises when the en (up to speed and volts) to control an external c When the engine stops running for the duration Delay.	gine becomes available . This output is designed ooling fan. , the cooling fan remains of the <i>Fan Overrun</i>
Control Generator	Fuel Pump Control IEEE C37.2 – 71 Level Switch	Becomes active when the Fuel level falls below the Fuel Pump Control ON setting and is normally used to transfer fuel from the bulk tank to the day tank.	If the output is already active it becomes inactive when the <i>Fuel</i> <i>level</i> is above the <i>Fuel</i> <i>Pump Control OFF</i> settings.
Control Generator	Fuel Relay	Becomes active when the controller requires the governor/fuel system to be active.	Becomes inactive whenever the set is to be stopped, including between crank attempts, upon controlled stops and upon fault shutdowns.

Control	Output Source	Activates	Is Not Active
Control Generator	Generator Excite	Used to control the	Becomes inactive when
	IEEE C37.2 – 31 Separate	excitation of the main	the set is stopped.
	Excitation Device	alternator (AC).	
Control Generator	Idle Running	Becomes active	Becomes inactive when
	10.0 110	when the controller	the controller requests
		requests that the	that the engine runs at
		engine runs at idle	rated speed
		speed.	
		As an output, this is	
		used to give a signal	
		to the <i>Idle</i> Speed	
		<i>Input</i> on the engine	
		speed governor (if	
		available).	
Control Generator	Load Share Inhibit	This output indicates t	hat a digital input that has
		been configured as 'Lo	bad Share Inhibit' is
		active. It indicates that	Governor synchronising
		is disabled but has no	effect on its output. Load
		Share and AVR (set to	zero) are disabled but
		ECU Droop will contin	ue to function as normal.
Control Generator	Louvre Control	Active when the fuel re	elav becomes active.
		Normally used to drive	ventilation louvres for the
		generator set.	
Control Generator	Preheat During	Becomes active	Inactive when:
	Preheat Timer	when the preheat	 The set is stopped
		timer begins.	The preheat timer has
		Normally used to	expired
		control the engine	
		preheat glow-plugs.	
Control Generator	Preheat Until End Of	Becomes active	Inactive when:
	Cranking	when the preheat	• The set is stopped
	_	timer begins.	The set has reached
		Normally used to	crank disconnect
		control the engine	conditions.
		preheat glow-plugs.	
Control Generator	Preheat Until End Of	Becomes active	Inactive when:
	Safety Timer	when the preheat	 The set is stopped
		timer begins.	The set has reached the
		Normally used to	end of the safety delay
		control the engine	timer
		preheat glow-plugs.	
Control Generator	Preheat Until End of	Becomes active	Inactive when:
	Warming Timer	when the preheat	 The set is stopped
		timer begins.	The set has reached the
		Normally used to	end of the <i>warming</i> timer
		control the engine	
		preheat glow-plugs.	
Control Generator	Remote Start From	Active when any config	gured Remote Start digital
Control Concretor		Input is active.	to be used in
Control Generator	Reset AVR to Datum		a lo be used in
		notontiometer which k	
		input This output is a	tivated whenever the
		module needs to rest	the potentiometer to its
		centre position	
Control Generator	Reset Governor to	This output is intended	d to be used in
	Datum	conjunction with an ele	ectronic or motorised

Control	Output Source	Activates	Is Not Active
		potentiometer, which has a 'centre pot' type input. This output is activated whenever the module needs to reset the potentiometer to its centre position.	
Control Generator	Start Relay IEEE C37.2 – 54 Turning Gear Engaging Device	Active when the control of the engine.	oller requires the cranking
Control Generator	Sync Lock Control Active	Active when Sync Loc active.	k Control on Input is
Control Load Switching	Close Gen Output IEEE C37.2 – 52 AC Circuit Breaker	Used to control the load switching device. Whenever the module selects the generator to be on load this control source is activated.	Inactive whenever the generator is not required to be on load.
Control Load Switching	Close Gen Output Pulse IEEE C37.2 – 52 AC Circuit Breaker	Used to control the loa Whenever the module be on load this control the duration of the Bre after which it becomes	ad switching device. a selects the generator to a source is activated for <i>eaker Close Pulse</i> timer, s inactive again.
Control Load Switching	Close Mains Output (Single Set)	Used to control the load switching device. Whenever the module selects the mains to be on load this control source is activated.	The output is inactive whenever the mains is not required to be on load.
Control Load Switching	Close Mains Output Pulse (Single Set)	Used to control the load switching device. Whenever the module selects the mains to be on load this control source is activated for the duration of the <i>Breaker Close Pulse</i> timer, after which it becomes inactive again	
Control Load Switching	Dummy Load Control (1 to 5)	Becomes active when the engine kW falls below the Dummy Load Control Trip Setting.	Inactive when the engine kW returns to above the Dummy Load Control Return setting.
Control Load Switching	Generator Load Inhibited	Active when the Gene	erator Load Inhibit input is
Control Load Switching	Interlock Override (Single Set)	Comes on just before goes into parallel enal mechanical or electric <i>Override</i> deactivates a <i>Off Timer</i> has expired	and just after the gen-set bling an output for a al interlock. <i>The Interlock</i> after the <i>Interlock Override</i>
Control Load Switching	Load Shedding Control (1 to 5)	Becomes active when the engine kW exceeds Load Shedding Control Trip Setting.	Inactive when the engine kW returns to below the Load Shedding Control Return setting.
Control Load Switching	Open Gen Output IEEE C37.2 – 52 AC Circuit Breaker	Used to control the load switching device. Whenever the module selects the generator to be off load this control source is activated.	Inactive whenever the generator is required to be on load.

Control	Output Source	Activates	Is Not Active
Control Load	Open Gen Output	Used to control the loa	d switching device.
Switching	Pulse	Whenever the module	selects the generator to
	IEEE C37.2 – 52 AC Circuit	be off load this control	source is activated for
	Breaker	the duration of the Bre	aker Open Pulse timer,
		after which it becomes	inactive again.
Control Load	Open Mains Output	Used to control the	The output is inactive
Switching	(Single Set)	load switching	whenever the mains is
_	IEEE C37.2 – 52 AC Circuit	device. Whenever	required to be on load.
	Breaker	the module selects	
		the mains to be off	
		load this control	
		source is activated.	
Control Load	Open Mains Output	Used to control the loa	d switching device.
Switching	Pulse (Single Set)	Whenever the module	selects the mains to be
	IEEE C37.2 – 52 AC Circuit	off load this control sou	urce is activated for the
	Dreaker	duration of the Breake	<i>r Open Pulse</i> timer, after
		which it becomes inact	tive again.
Control Misc	Audible Alarm	Use this output to	Inactive if no alarm
	IEEE C37.2 – 74 Alarm	activate an internal	condition is active or if
	Relay	sounder, external	the Mute pushbutton
		sounder or external	was pressed.
		alarm indicator	
		including starting	
		alarms. Operation of	
		the Mute pushbutton	
		resets this output once	
Control Mino	labibit Detropofor To	activated.	afor To Maine has have
Control Misc	Moine (Single Set)	Indicates Innibit Retrai	al input or a tick bay in
	Mains (Single Set)	Config Suite	
Control Misc	Lamp Test	Active when the lamp t	est is activated by a
	Lamp rost	digital input or by pres	sing the Mute/Lamp Test
		control button	sing the mate Lamp root
Control Power Control	1 Constant Power	Active when the Powe	r Mode 1 Constant Power
	Mode (Default)	(Default) is selected.	
Control Power Control	2 Frequency-Power	Active when the Powe	r Mode 2 Frequency
	Mode	Power is selected.	
Control Power Control	3 Voltage-Power Mode	Active when the Powe	r Mode 3 Voltage Power
		is selected.	
Voltage and Reactive	1 Constant Power	Active when the React	ive Mode 1 Constant
Power Control	Factor Mode	Power Factor is select	ed.
Voltage and Reactive	2 Voltage-Reactive	Active when the React	ive Mode 2 Voltage
Power Control	Power Mode	Reactive Power is sele	ected.
Voltage and Reactive	3 Power-Power Factor	Active when the React	ive Mode 3 Power Factor
Power Control	Mode	is selected.	
Voltage and Reactive	4 Constant Reactive	Active when the React	tive Mode 4 Constant
Power Control	Power Mode (Default)	Reactive Power (Defail	ult) is selected.

3.5.3.3 STATUS

Status	Output Source	Activates	Is Not Active
Status Aftertreatment	DEF Level Low	Active when <i>DEF Level</i> I active.	Low CANbus alarm is
Status Aftertreatment	SCR Inducement	Active when SCR Induce active.	ment CAN Alarm is
Status AMSC	AMSC Link Disabled	Active when linked to a D	Digital Input.
Status Bus	Bus Live (Multi Set)	This output indicates that a voltage has been detected on the bus. Once the voltage on the bu is detected above the "Dead bus relay setting", i is no longer considered a 'dead-bus' and the generator needs to synchronise to close onto th bus.	
Status Communications	Remote Start Over AMSC (Multi Set)	Indicates that the control Remote Start On Load s	ler has received a ignal via the AMSC link.
Status Electrical Trip	Electrical Trip Reset	Active when the electrical trip has been reset.	Inactive on the next electrical trip alarm or when the generator is at rest.
Status Electrical Trip	Electrical Trip Reset Count Exhausted	Active when the maximum number of resets within specified time frame has been reached.	Inactive when the generator is at rest.
Status Electrical Trip	Electrical Trip Stop Inhibited	Becomes active when the generator has been or load, there is an active electrical trip alarm and inhibit engine stop has been enabled.	
Status Electrical Trip	Waiting for Electrical Trip Reset	Active when an electrical trip alarm is active and waiting for it to be reset.	Inactive when the electrical trip alarm has been reset or when the generator is at rest.
Status Engine	AVR Data Fail	Active when the AVR Data Fail alarm is active, indicating communication failure with the CAN AVR.	
Status Engine	AVR Fault	Active when the AVR Fa indicating an alarm detection	ult alarm is active, ction on the CAN AVR.
Status Engine	Water In Fuel	Active when the digital in <i>Fuel</i> is active.	put function Water In
Status Generator	All Available Sets Are On The Bus (Multi Set)	This output indicates that all the available sets in the Multiset load sharing system are closed onto the generator bus. This output is used to close an external breaker to allow the generator bus to power the load. 'Available sets' are sets in auto mode with no alarms present. So, sets not in auto mode or sets that have alarms present are not considered to be 'available sets'.	
Status Generator	Generator at Rest	This output indicates tha running, and no alarms a	t the generator is not are active.
Status	Output Source	Activates	Is Not Active
-----------------------	--	--	--
Status Generator	Generator Available	Active when the	Inactive when
		generator is available	 Loading voltage
		to take load.	and loading
			frequency have not
			been reached
			After electrical trip
			alarm
			During the starting
			sequence before the
			end of the warming
			timer.
Status Generator	Generator Stopping	I his output source indica	ates that the engine has
		rest Once the ongine of	but has not yet come to
		output becomes inactive	
Status Generator	Low Load	Indicates that the stopping	na sequence is beginning
Status Generator		due to low load levels ()	oad Demand Scheme)
Status Generator	Panel locked	Active when any panel k	ocked sources are active
Status Generator	Starting Alarms	This output indicates the	t the starting alarms are
	Armed	now enabled. It is used t	o control external logic
		circuitry. Starting alarms	are armed as soon as
		the module commences	starting of the engine
		and remain armed until t	he engine is at rest.
Status Generator	Working Adjusted	Active when the nominal	voltage is different than
	Nominal Volts (Multi	the configured nominal v	voltage.
	Set)	Indicates that the nomina	al voltage was changed
		through the module FPE	and set to a different
		voltage than the configur	red nominal voltage.
Status Load Switching	Gen And Mains In	This output is active	This output is not active
	Parallel (Single Set)	whenever the	whenever the generator
		generator and mains	and mains are not in
Status Load Switching	Generator Closed	Active when the Genera	for Closed Auxiliary input
Otatus Load Ownerning	Aux	is active	tor Closed Advinary input
Status Load Switching	Mains Closed Aux	Active when the Mains C	Closed Auxiliary input is
g	(Single Set)	active.	······································
Status Mains	Clear Mains	Active when the Clear M	lains Decoupling Alarms
	Decoupling	digital input is active.	
Status Module Inputs	Alarm Mute	Active when the alarm m	nute digital input is active.
Status Module Inputs	Alarm Reset	Active when the alarm re	eset digital input is active.
Status Module Inputs	Auto Restore Inhibit	Active when the Auto Re	estore Inhibit function is
	(Single Set)	active.	
	Or Interlocking Relay		
	of interioriting ready		
Status Module Inputs	Auto Run Inhibited	Active when the Auto Ru	<i>In Inhibit</i> function is
		active.	
Status Module Inputs	Auto Start Inhibit	Active when the Auto-St	art Inhibit function is
-		active.	
Status Module Inputs	Auxiliary Mains	Active when the Auxiliar	y Mains Fail input
	Failure (Single Set)	function is active.	
Status Module Inputs	DC Power On	Active when DC power is	s supplied to the module.
Status Module Inputs	Digital Input A, B, C, D, E, F, G H & I	Active when the relevant	t digital input is active.
Status Module Inputs	Duty Select (Multi Set)	Indicates that a digital in Select is active.	put configured to Duty
Status Module Inputs	EJP1 / EJP2	Active when an input con <i>EJP</i> 2 is active.	nfigured for <i>EJP1</i> or

Status	Output Source	Activates Is Not Active
Status Module Inputs	Frequency Droop	Active when the Frequency Droop Enable input has been activated
Status Module Inputs	Inhibit Scheduled	Active when the Inhibit Scheduled run input is
Status Module Inputs	Mains Load Inhibited (Single Set)	Active when the <i>Mains Load Inhibit</i> digital input is active
Status Module Inputs	Mains Parallel Mode	Active when the Mains Parallel Mode digital input becomes active
Status Module Inputs	Manual Restore	Active when the manual restore contact input is active
Status Module Inputs	Mute / Lamp Test Button Pressed	This output indicates that the alarm mute / Lamp test push button is being operated. Once the button is released, the output becomes inactive.
Status Module Inputs	Panel Locked By Digital Input	Active when the panel is locked by Digital Input.
Status Module Inputs	Parallel Inhibit (Single Set)	Active when the <i>Parallel Inhibit</i> digital input is active.
Status Module Inputs	Remote Start In Island Mode (Single Set)	This output indicates that a digital input that has been configured as ' <i>Remote Start</i> In Island mode' is active. This output could be used to pass the start signal on to elsewhere in the control system.
Status Module Inputs	Remote Start Off Load	Active when the <i>Remote Start Off Load</i> input is active.
Status Module Inputs	Remote Start On Load	Active when the <i>Remote Start On Load</i> input is active.
Status Module Inputs	Remote Start On Load Demand (Multi Set)	Indicates that the module's input is active for Remote Start On Load Demand (Multi-Set). Also indicates that the controller has received a Remote Start On Load signal via the AMSC link.
Status Module Inputs	Reset Maintenance 1, 2 or 3	Active when the relevant <i>Maintenance Alarm Reset</i> is active.
Status Module Inputs	Simulate Auto Button	Active when the Simulate Auto Button digital input is active.
Status Module Inputs	Simulate Left Switchgear Button	Active when the Simulate Left Switchgear Button digital input is active
Status Module Inputs	Simulate Mains Available	Active when the <i>Simulate Mains Available</i> digital input is active.
Status Module Inputs	Simulate Manual Button	Active when the Simulate Manual Button digital input is active.
Status Module Inputs	Simulate Mode Button	Active when the Simulate Mode Button digital input is active.
Status Module Inputs	Simulate Right Switchgear Button	Active when the Simulate Right Switchgear Button digital input is active.
Status Module Inputs	Simulate Start Button	Active when a digital input configured to Simulate Start Button is active.
Status Module Inputs	Simulate Stop Button	Active when the Simulate Stop Button digital input is active.
Status Module Inputs	Simulate Test On Load Button (Single Set)	Active when the <i>Simulate Test On Load Button</i> digital input is active.
Status Module Inputs	Stop And Panel lock	Active when the Stop And Panel Lock digital input is active.
Status Module Inputs	Stop Button Pressed	This output indicates that the stop pushbutton is being operated. Once the button is released, the output becomes inactive.
Status Module Inputs	Sync Lock Input	Active when Sync Lock On Input is enabled.
Status Module Inputs	Telemetry Panel	Active when the Telemetry Panel Lock digital input is active.

Status	Output Source	Activates	Is Not Active
Status Module Inputs	Voltage Droop Input (Multi Set)	Active when the Voltage been activated.	Droop Enable input has
Status Operation	Alternative Config 1-5 Selected	Active when the alternative selected.	ve configuration is
Status Operation	Arm Safety On Alarms	Becomes active at the end of the <i>safety delay</i> timer whereupon all alarms configured to	Inactive when: When the set is at rest In the starting sequence before the
		From Salety On	Salety Delay timer has
Status Operation	Calling for Scheduled Run	Active during a Schedule inbuilt Scheduler.	d Run request from the
Status Operation	Closed To Generator State (Multi Set)	Active when the status of closed.	the generator breaker is
Status Operation	Closed To Mains State (Single Set)	Active when the status of closed.	the mains breaker is
Status Operation	Cooling Down	Active when the Cooling	timer is in progress.
Status Operation	Data Logging Active	Active when data is Ir being logged. T th being logged. T th is T th a C	hactive when: Data logging is disabled The engine is at rest and the option <i>Only Log</i> When Engine Is Running is enabled The internal memory of the module becomes full, and the option Keep Didest Data is enabled.
Status Operation	Dead Bus Synchronise Enabled (Multi Set)	Active when Dead Bus S	ynchronising is enabled.
Status Operation	Dead Bus Synchronise In Progress (Multi Set)	Active when the set is run synchronising.	nning dead bus
Status Operation	Frequency Droop Enabled (Multi Set)	Active when the Frequen activated.	<i>cy Droop</i> has been
Status Operation	Load Demand Delay Active (Multi Set)	Indicates that the set has that the <i>Load Demand D</i> When this has expired, th <i>Scheme</i> is activated.	closed onto the bus and elay is in progress. he <i>Load Demand</i>
Status Operation	Main Config Selected	Active when the main cor	nfiguration is active.
Status Operation	Multi Set Application Selected	Active when the module i application.	s running the <i>Multi Set</i>
Status Operation	Protections Disabled	Active when protections a the configuration. If it is s the input active as well.	are disabled (ticked) in et as <i>On Input</i> it needs
Status Operation	Return Delay In Progress	This output source is acti return timer is running.	ve to indicate that the
Status Operation	Scheduled Auto Start Inhibit	Active during a Schedule request from the inbuilt S	d Auto Start Inhibit cheduler.
Status Operation	Shutdown Blocked	Becomes active when pro and one of the active trip active.	otections are disabled or shutdown alarms are
Status Operation	Single Set Application Selected	Active when the Single S selected.	et Application is
Status Operation	Start Delay in Progress	This output source is acti module's internal start de Once this timer expires th start sequence.	ve to indicate that the lay timer is running. ne module initiates its

Status	Output Source	Activates Is Not Active
Status Operation	Start Paused	Active when the Start Pause digital input is active.
Status Operation	Synching Enabled	This output indicates that the synchronisation feature has been enabled.
Status Operation	System Healthy	This output indicates that the module is in Auto mode and there are no alarms present.
Status Operation	System in Auto Mode	Active when Auto mode is selected.
Status Operation	System in Manual Mode	Active when Manual mode is selected.
Status Operation	System in Stop Mode	Active when Stop mode is selected.
Status Operation	System In Test Mode (Single Set)	Active when Test On Load mode is selected.
Status Operation	Voltage Droop Enabled (Multi Set)	Active when the Voltage Droop has been activated.
Status Operation	Waiting For Generator	This output indicates that the engine has been instructed to start but has not yet become available. Once the generator becomes available this output becomes in-active. (Available = Generator Frequency and Voltage levels are above the ' <i>Loading</i> ' levels set in the configuration).
Status Operation	Waiting For Manual Restore (Single Set)	Becomes active when the generator is on load and the mains supply is healthy, but an input configured to <i>Auto Restore Inhibit</i> is active. This is used to signal to an operator that action is required before the set transfers back to the mains supply.
Status Regeneration	DPF Auto Regen Inhibit Request	Active when the <i>DPF Auto Regen Inhibit Request</i> is active.
Status Regeneration	DPF Forced Regeneration Requested	Active when the <i>DPF Force Regeneration</i> is active.
Status Regeneration	DPF Non-Mission State	Active when the DPF Non-Mission State is active.
Status Regeneration	DPF Regeneration In Progress	Active when the DPF Regeneration is in progress.
Status Regeneration	DPF Regeneration Interlock Active	Active when the DPF Regeneration Interlock is active.
Status Regeneration	DPTC Filter	Active when the diesel particulate filter CANbus alarm is active.
Status Regeneration	HEST Active	Active when the High Exhaust System Temperature CANbus alarm is active
Status Telemetry	Combined Remote Start Request	Indicates that a Remote Start request is active.
Status Telemetry	Panel Locked By Telemetry	Active when the panel is locked by Telemetry.
Status Telemetry	Telemetry Active	Active when the communication port is live and for a short time after transmission stops. Used as a relay or LED source.
Status Telemetry	Telemetry Active RS485 1 & 2	Active when the RS485 communication ports are live and for a short time after transmission stops. Used as a relay or LED source.
Status Telemetry	Telemetry Data Active RS485 1 & 2	Active when data is being transmitted on RS485 ports 1 & 2. This output changes state continuously (flash) upon data transfer. Normally used as an LED source rather than a relay source as the signal flashes repeatedly.

Status	Output Source	Activates	Is Not Active
		For a similar source more	e suited to drive a relay,
		see Telemetry Active.	
Status Telemetry	Telemetry Data Active	Active when data is being output changes state con data transfer. Normally us rather than a relay source repeatedly.	y transmitted. This Itinuously (flash) upon sed as an LED source e as the signal flashes
Status Telemetry	Telemetry Start in Auto Mode	Active when a Multi Set C sent over by communicat	Controller Request is tion.
Status Virtual Input	Virtual Input 1-12	Active when the Virtual In activated	put 1 to 12 has been

3.6 TIMERS

Many timers are associated with alarms. Where this occurs, the timer for the alarm is located on the same page as the alarm setting. Timers not associated with an alarm are located on the *Timers* page. The *Timers* page is subdivided into smaller sections. Select the required section with the mouse.

Timers Start Tim Load/Stopping Module Tin 3.6.1 ST. Start Delay	ers a Timers mers ART TIMERS		Click and drag to change the setting. Timers increment in steps of 1 second up to one minute, then steps of 30 seconds up to 30minutes, then in steps of 30 minutes thereafter (where allow by the limits of the timer)	in wed
	Start Delay			
	Remote Start Off Load Remote Start On Load Telemetry Start	5s 5s 5s		

Timor	Description
IImer	Description
Remote Start Off	The amount of time delay before starting in AUTO mode. This timer is
Load	activated upon the <i>Multi Set or Single Set Controller Off Load</i> command being
	issued.
	Typically, this timer is applied to prevent starting upon fleeting start signals.
Remote Start On	The amount of time delay before starting in AUTO mode. This timer is
Load	activated upon the Multi Set or Single Set Controller On Load command being
	issued.
	Typically, this timer is applied to prevent starting upon fleeting start signals.
Telemetry Start	The amount of time delay before starting in AUTO mode. This timer is
	activated upon a <i>Multi Set Controller</i> command being received from a
	Modbus master.
	Typically, this timer is applied to prevent starting upon fleeting start signals.

Start Delay (Single Set)

Start Delay (Single Set)		
Mains Fail	5s	·]

Timer	Description
Mains Fail	The amount of time delay before starting in AUTO mode. This timer is
	activated upon a mains failure detection.

Start Delay (Group Controller)

Start Delay (Group Controller)	
Start From AMSC Master 5s	

Timer	Description
Mains Fail	The amount of time delay before starting in AUTO mode. This timer is
	activated upon to delay the AMSC Master request on the Group controller.

Start Timers

Start Timers		
		-
Engage Attempt	2.0s	
Engage Rest	1.6s	
Delay Crank	0.5s	0
Cranking	10s]
Cranking Rest	10s]
DPF Ramp	5.0s	
Safety On Delay	10s	
Warming	0s	0
MPU Fail Delay	2.0s]

Timer	Description
Engage Attempt	NOTE: Only available if using magnetic pick-up and multiple engage attempts.
	The amount of time the module attempts to engage the starter motor during each engage attempt. If the Magnetic Pick-up is not detecting movement of the flywheel when this timer expires, the engage attempt terminates. When the engage fails consecutively for the configured number of <i>Engage</i> <i>Attempts</i> , the <i>Fail to Engage</i> alarm is activated.
Engage Rest	A NOTE: Only available if using magnetic pick-up and multiple engage attempts.
	The amount of time the module waits between attempts to engage the starter.
Delay Crank	The amount of time delay between the fuel relay and the crank relay energising. This is typically used to allow fuel systems to prime.
Cranking	The amount of time for each crank attempt.
Crank Rest	The amount of time between multiple crank attempts.
DPF Ramp	The amount of time that the engine takes to run up to rated speed after running at its DPF speed.
Safety On Delay	The amount of time at start-up that the controller ignores oil pressure and engine under speed and other delayed alarms. This is used to allow the engine to run up to speed before protections are activated.
Warming	The amount of time the engine runs before being allowed to take load. This is used to warm the engine to prevent excessive wear.
MPU Fail Delay	A NOTE: Only available if using Magnetic pick-up
	The amount of time during which the module must receive a speed signal once cranking has commenced. If no signal is present, the engine is stopped, and a <i>Loss of Speed Sensing</i> alarm given.

Start Timers (Single Set)

Start Timers (Single Set)		
Mains Transient Delay	2.0s	-0

Timer	Description
Mains Transient Delay	Used to give a delay between sensing mains failure and acting upon it. This is used to prevent dropouts of the mains load switch and operation of the system due to mains supply transient conditions.

3.6.2 LOAD / STOPPING TIMERS

Load Timers

Load Timers		
Transfer Time / Load Delay	0.7s	0
Breaker Close Pulse	0.5s	
Breaker Trip Pulse	0.5s	

Timer	Description
Transfer Time	The time between one load switch opening and the other closing when a
	break transfer is required.
Breaker Close Pulse	The amount of time that Breaker Close Pulse signal is present when the
	request to close the load switch is given.
Breaker Trip Pulse	The amount of time that Breaker Open Pulse signal is present when the
	request to open the load switch is given.

Load Timers (Single Set)

Load Timers (Single Set)		
Parallel Run Time	0s	0

Timer	Description
Parallel Run Time	This timer dictates how long the generator runs in parallel with the mains
	supply before ramping down.

Return Delay Timers

Return Delay Timers		
Remote Start Off Load	30s	
Remote Start On Load	30s	
Telemetry Start	30s	
Mains Fail	30s	

Timer	
Remote Start Off Load	A delay, used in auto mode only, that allows for short term removal of the Remote Start off Load request to stop the set before action is taken. This is usually used to ensure the set remains on load before accepting that the start request has been removed.
Remote Start On Load	A delay, used in auto mode only, that allows for short term removal of the Remote Start on Load request to stop the set before action is taken. This is usually used to ensure the set remains on load before accepting that the start request has been removed.
Telemetry Start	A delay, used in auto mode only, that allows for short term removal of the GenComm request to stop the set before action is taken. This is usually used to ensure the set remains on load before accepting that the start request has been removed.
Mains Fail	A delay, used in auto mode only, that allows for short term removal of the request to stop (Mains Return) the set before action is taken. This is usually used to ensure the set remains on load before accepting that the start request has been removed.

Return Delay Timers (Multi Set)

	Return Delay	y Timers (Mul	ti Set)		
	Start From A	MSC Master	30s		-
Timer					
Start F Master	rom AMSC	A delay, used AMSC Maste This is usuall	l in auto r reques y used to	mode only, that allows for short term removes to stop the generator before any action is o ensure the generators in the load demand	/al of the taken. I scheme

are on load before others accept that their start request has been removed.

Stopping Timers

Stopping Timers		
Cooling	1m]
Cooling at Idle	0s]
ETS Solenoid Hold	0s]
Fail to Stop Delay	30s]

Timer	Description
Cooling	The amount of time that the set is made to run OFF LOAD before being stopped. This is to allow the set to cool down and is particularly important for engines with turbo chargers.
Cooling at Idle	The amount of time that the set is made to run OFF LOAD and at Idle Speed before being stopped.
ETS Solenoid Hold	The amount of time the <i>Energise to stop</i> solenoid is kept energised after the engine has come to rest. This is used to ensure the set has fully stopped before removal of the stop solenoid control signal.
Fail to stop Delay	If the set is called to stop and is still running after the <i>fail to stop</i> delay, a <i>Fail to Stop</i> alarm is generated.

3.6.3 MODULE TIMERS

Í	Interface Timers		
	Page	5m	
	Sleep Timer	5m	
	Backlight Power Save Mode Delay	1m	

Timer	Description		
Page	If the module buttons are not pressed for the duration of the LCD Page		
_	<i>Timer</i> it reverts to show the <i>Status</i> page.		
Sleep Timer	If the module is left in Stop Mode and is at rest with no communication for		
	the duration of the Sleep Timer, it goes into sleep mode to save power.		
Backlight Power	If the module is left unattended for the duration, then the Backlight will go		
Save Mode Delay	into Power Save Mode.		

3.7 GENERATOR

The *Generator* section is subdivided into smaller sections. Select the required section with the mouse

Generator
Generator Options
Generator Options
Generator Rating
Generator De-Rate
Generator Voltage
Generator Sequence Alarms
Generator Frequency
Generator Current
Generator Power
Synchronising
Fault Ride Through

3.7.1 GENERATOR OPTIONS

Generator Options

Parameter	Description		
Alternator Fitted	\Box = There is no alternator in the system, it is an <i>engine only</i> application		
	\blacksquare = An alternator is fitted to the engine; it is a generator application.		
Poles	The number of poles on the alternator.		
AC System	Select the AC topology of the generator from the following list:		
	2 Phase, 3 Wire L1 - L2		
	2 Phase, 3 Wire L1 - L3		
	3 Phase, 3 Wire		
	3 Phase, 3 Wire NVD		
	3 Phase, 4 Wire		
	3 Phase, 4 Wire Delta L1 - N - L2		
	3 Phase, 4 Wire Delta L1 - N - L3		
	3 Phase, 4 Wire Delta L2 - N - L3		
	Single Phase, 2 Wire		
	Single Phase, 3 Wire L1 - L2		
	Single Phase, 3 Wire L1 - L3		
VT Fitted	\Box = The voltage sensing to the controller is direct from the alternator		
	\mathbf{M} = The voltage sensing to the controller is via Voltage Transformers (VTs		
	or PTs)		
	This is used to step down the generated voltage to be within the controller		
	Voltage specifications.		
	By entering the <i>Primary</i> and <i>Secondary</i> voltages of the transformer, the		
	controller displays the <i>Primary</i> voltage rather than the actual measured		
	This is typically used to interface the DSE module to high valtage systems		
	(I.G., TIKV <i>)</i> .		

Generator Phase Rotation

Generator Phase Rotation
Enable 🗸
Phase Rotation L1-L2-L3 💌

Parameter	Description
Generator Phase	\Box = Generator phase rotation is not checked.
Rotation	\square = An electrical trip alarm is generated when the measured phase rotation
IEEE C37.2 – 47 Phase	is not as configured.
Sequence Relay	

Breaker Control

Breaker Control		
Enable Breaker Alarms 🛛	7	
Fail to Open Delay	1.0s	
Fail to Close Delay	1.0s	

Parameter	Description
Enable Breaker	= Alarm is disabled
Alarms	☑ = The Generator Breaker Alarms are enabled.
Fail To Open Delay	When the Open Generator output is activated, if the configured Generator
	Closed Auxiliary digital input does not become active within the Generator
	Fail To Open Delay timer, the alarm is activated.
Fail To Close Delay	When the Close Generator output is activated, if the configured Generator
	Closed Auxiliary digital input does not become active within the Generator
	Fail To Close Delay timer, the alarm is activated.

3.7.2 GENERATOR RATING

Parameter	Description
kW Rating	The kW rating of the generator is the maximum power available to load share
	functions. This is used for all Generator Power functions in addition to the rating in
	which the kW load sharing calculations are based on.
kvar Rating	The positive kvar rating of the generator. This is used for all AVR functions in
	addition to the rating in which the kvar load sharing calculations are based on. To
	calculate the kvar rating of a genset:
	 Most generators are rated for a lagging power factor (kW / kVA) of 0.8
	From Pythagoras:
	$\cos \Phi = \frac{kW}{k}$
	kVA
	$\cos \Phi = 0.8$
	$\Phi = \cos^{-1} 0.8 = 36.87^{\circ}$
	• From this, the kvar rating of the typical 0.8 pf rated generator is:
	$\tan \Phi = \frac{\kappa \sqrt{ar}}{c}$
	kW
	$kVar = tan 30.87^{\circ} \times kW$
	$KVal = 0.75 \times KW$
	 Of to simplify this, the twal fating of a 0.6 pt fated generator is 74 of the two rating (kyar rating – 75% of kW rating)
-kvar Rating	The negative kyar rating of the generator. This is only used to limit the magnitude
Rvai Rading	of negative kvar which the generator produces when in parallel with the mains in
	addition to the rating in which the kyar load sharing calculations are based on. To
	calculate the kvar rating of a genset:
	 Most generators are rated for a leading power factor of 0.95
	From Pythagoras:
	kW
	$\cos \Phi = \frac{1}{kVA}$
	$\cos \Phi = 0.95$
	$\Phi = \cos^{-1} 0.95 = 18.20^{\circ}$
	• From this, the kvar rating of the typical 0.95 pf rated generator is:
	tan Φ – kvar
	$\tan \Phi = \frac{1}{kW}$
	$kvar = tan 18.20^{\circ} \times kW$
	$kvar = 0.33 \times kW$
	Or to simplify this, the kvar rating of a 0.95 pf rated generator is $\frac{1}{3}$ of the kW rating
	(-kvar rating = 33% of kW rating).

3.7.3 GENERATOR DE-RATE

NOTE: When the *Power De-Rate* or the *Reactive Power De-Rate* are enabled, the DSE module shows the kW De-Rate and kvar De-Rate pages on its LCD display.

ANOTE: The Power De-Rate and the Reactive Power De-Rate are adjusted from the PLC Editor, through the GenComm Override functionality, or from the Scada configuration section, or through Modbus.

For more information, refer to sections 3.18.4 (PLC) and 4.9.9 (De-Rate) in this document.

Generator De-Rate	
Enable Power De-Rate	
Enable Reactive Power De-Rate	

Parameter	Description
Enable Power	= Power De-Rate is disabled
De-Rate	$\mathbf{\Sigma}$ = Power De-Rate is enabled. The Generator kW Rating is De-Rated based
	on the PLC driven condition.
Enable Reactive	
Power De-Rate	A NOTE: When a kvar De-Rate % is applied, the same percentage is
	used to de-rate both the +kvar & -kvar ratings of the generator.
	= Reactive Power De-Rate is disabled
	$\mathbf{\Sigma}$ = Reactive Power De-Rate is enabled. The Generator kVAr Rating is De-
	Rated based on the PLC driven condition.

3.7.4 GENERATOR VOLTAGE

Under Voltage Alarms

Under Voltage Alar	ms		
Alarm 🔽			
Action	Shutdown 👻		
Trip	🗘 318 V PhPh	 80.0%	318V PhPh
Pre-Alarm			
Trip	🔷 339 V PhPh	 85.2%	339V PhPh
Activation Delay 0s			

Parameter	Description
Generator Under Voltage	Generator Under Volts does NOT give an alarm
Alarm	$\mathbf{\Sigma}$ = Generator Under Volts gives an alarm in the event of the
IEEE C37.2 - 27AC Undervoltage	generator output falling below the configured Under Volts Alarm Trip
Relay	value for longer than the Activation Delay. The Under-volts Alarm
	Trip value is adjustable to suit user requirements.
Action	Select the type of alarm required from the list:
	Electrical Trip
	Shutdown
	For details of these, see the section 5 entitled <i>Alarm Types</i> for more
	information.
Generator Under Voltage	Generator Under Volts does NOT give a Pre-Alarm alarm
Pre-Alarm	$\mathbf{\Sigma}$ = Generator Under Volts gives an instantaneous Pre-Alarm in the
IEEE C37.2 - 27AC Undervoltage	event of the generator output falling below the configured Under
Relay	Volts Pre-Alarm Trip value.
Activation Delay	This is used to give a delay on acceptance of the Under Voltage.

Loading Voltage

Loading Voltage			
Loading Voltage	358 V PhPh	90.0%	3585V PhPh
Enable Alarm	V		
Action	Electrical Trip 💌		

Parameter	Description
Loading Voltage	This is the minimum voltage the generator must be operating at before the module considers it available to take the load. It is also the voltage above the under-voltage trip that the generator output must return to before the module considers that the supply is back within limits. (i.e., With an under-voltage trip of 184 V and a loading voltage of 207 V, the output voltage must return to 207 V following an under-voltage event to be considered within limits.)
Enable Alarm	 Alarm is disabled. Image: Upon starting and after the Safety On Delay Timer expires, if the generator output voltage fails to reach the Loading Voltage set point, the Loading Voltage Not Reached alarm is activated.
Action	Select the type of alarm required from the list: <i>Electrical Trip</i> <i>Indication</i> <i>Shutdown</i> <i>Warning</i> For details of these, see the section 5 entitled Alarm Types for more information.

Nominal Voltage

Nominal Voltage					
	- 3 98	V PhPh	0	 100.0 %	3984V PhPh

Parameter	Description
Nominal Voltage	This is used for synchronising and used to calculate the percentages
	of the alarm set points and instruct the module what system voltage to adjust the generator to whilst running on load.

<u>Over Voltag</u>	e Alarms Over Voltage Alarm Pre-Alarm		Click to e The releging greyed of	enable or disable vant values belo out if the alarm is	e the alarms. w will appear s disabled.		
	Return	÷ 4	39 V PhPh			110.4%	439V PhPh
	Trip	+ 4	58 V PhPh			115.2%	458V PhPh
	Alarm						
	Trip	÷ 4	79 V PhPh			120.4%	479V PhPh
	Activation Delay 0s						

Parameter	Description
Generator Over Voltage	= Alarm is disabled
Pre-Alarm IEEE C37.2 – 59 AC Overvoltage Relay	
Generator Over Voltage	Generator Over Volts gives a Shutdown alarm in the event of the
Alarm	generator output rising above the configured Over Volts Alarm Trip
IEEE C37.2 – 59 AC Overvoltage	value for longer than the Activation Delay. The Over-volts Alarm Trip
Relay	value is adjustable to suit user requirements.
Activation Delay	This is used to give a delay on acceptance of the Over Voltage.

3.7.5 GENERATOR SEQUENCE ALARMS

Zero Sequence Alarm

Zero Sequer	ice Alarm			
Enable 🔳	Zero Sequence	should be set to a third of the required NVI	D value.	
Action	-			
Arming	-			
Trip	🗘 39.8 V PhF	Ph =	10.0%	39.8V PhPh
Delay	0.0s			

Parameter	Description
Zero Sequence Alarm IEEE C37.2 – 47H Phase-Sequence Or Phase Balance Voltage Relay	NOTE: The Zero Sequence Alarm must be set to a third of the required Neutral Voltage Displacement (NVD) value. This is because the summation of the three Zero Sequence vector components is equal to the NVD value.
	This is also known as Neutral Voltage Displacement. \Box = Alarm is disabled $\overline{\Box}$ = The alarm activates when the difference in potential between the Earth and the calculated Neutral position of a 3-wire delta exceeds the configured Zero Sequence Alarm Trip level for the configured Delay time.
Action	Select the type of alarm required from the list: <i>Electrical Trip</i> <i>Warning</i> For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
Arming IEEE C37.2 -81 Frequency Relay	Select when the alarm becomes active: Active from Mains Parallel: The Zero Sequence Alarm is monitored when generator and mains are in parallel. From Safety On: The Zero Sequence Alarm is monitored from the end of the Safety On Delay timer.

Positive Sequence Alarm

Positive Sequ	ence Alarm			
Enable 🔳				
Action	•			
Arming	*			
Trip	358.5 V PhPh		90.0%	358.5V PhPh
Delay 0.	0s]		

Parameter	Description
Positive Sequence Alarm	\square = Alarm is disabled \square = The alarm activates when the <i>Positive Sequence</i> voltage falls below
IEEE C37.2 – 47L Phase-Sequence Or Phase Balance Voltage	the configured <i>Positive Sequence Alarm Trip</i> level for the configured <i>Delay</i> time.
Relay	
Action	Select the type of alarm required from the list:
	Electrical Trip
	Warning
	For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
Arming	Select when the alarm becomes active:
-	Active From Mains Parallel: The Positive Sequence Alarm is monitored
	when generator and mains are in parallel
	From Safety On: The Positive Sequence Alarm is monitored from the
	end of the Salety On Delay timer.

Negative Sequence Alarm

Negative Se	quence Al	arm		
Enable 🔳				
Action			-	
Arming			-	
Trip	‡ 39.8	V PhPh		= 10.0% 39.8V PhPh
Delay	0.0s			

Parameter	Description
Negative Sequence	= Alarm is disabled
Alarm	$\mathbf{\Sigma}$ = The alarm activates when the <i>Negative Sequence</i> voltage exceeds
IEEE C37.2 – 47H	the configured Negative Sequence Alarm level for the configured Delay
Phase-Sequence Or	time.
Phase Balance Voltage	
Relay	
Action	Select the type of alarm required from the list:
	Electrical Trip
	Warning
	For details of these, see the section 5 entitled <i>Alarm Types</i> for more
	information.
Arming	Select when the alarm becomes active:
	Active From Mains Parallel: The Negative Sequence Alarm is monitored
	when generator and mains are in parallel
	From Safety On: The Negative Sequence Alarm is monitored from the
	end of the Safety On Delay timer.

Asymmetry Alarm

Asymmetry	Alarm					
Enable 🔳						
Action			-			
Arming			-			
Trip	\$ 39.8	V PhPh		-[10.0%	39.8V PhPh
Delay	0.0s]		

Parameter	Description		
Asymmetry Alarm	\Box = Alarm is disabled		
IEEE C37.2 – 59	$\mathbf{\Sigma}$ = The alarm activates when the voltage between any two phases		
Overvoltage Relay	exceeds the configured Asymmetry Alarm Trip level for the configured		
	Delay time.		
	For example:		
	L1=230, L2=235, L3=226		
	Asymmetry is <i>largest value</i> – <i>smallest value</i> = 235 – 226 = 9V		
Action	Select the type of alarm required from the list:		
	Electrical Trip		
	Warning		
	For details of these, see the section 5 entitled <i>Alarm Types</i> for more		
	information.		
Arming	Select when the alarm becomes active:		
	Active From Mains Parallel: The Asymmetry Alarm is monitored when		
	generator and mains are in parallel		
	From Safety On: The Asymmetry Alarm is monitored from the end of the		
	Safety On Delay timer.		

3.7.6 GENERATOR FREQUENCY

Under Frequency Alarms	<u>1</u>	Click and drag
	Under Frequency Alarms	to change the
	Alarm Z Action Shutdown T	setting.
	Imp +400 Hz Pre-Alarm ✓ Trip ↓ 42.0 Hz	84.0%

Parameter	Description
Generator Under	Generator Under Frequency does NOT give an alarm
Frequency Alarm	$\mathbf{\Sigma}$ = Generator Under Frequency gives an alarm in the event of the
IEEE C37.2 -81 Frequency	generator output frequency falling below the configured Under Frequency
Relay	Alarm Trip value for longer than the Activation Delay. The Under-
	frequency Alarm Trip value is adjustable to suit user requirements.
Action	Select the type of alarm required from the list:
	Electrical Trip
	Shutdown
	For details of these, see the section 5 entitled <i>Alarm Types</i> for more
	information.
Generator Under	Generator Under Frequency does NOT give a Pre-Alarm
Frequency Pre-Alarm	$\mathbf{\Sigma}$ = Generator Under Frequency gives a Pre-Alarm in the event of the
IEEE C37.2 -81 Frequency	generator output frequency falling below the configured Under Frequency
Relay	Pre-Alarm Trip value for longer than the Activation Delay. The Under
	Frequency Pre-Alarm Trip value is adjustable to suit user requirements.
Activation Delay	This is used to give a delay on acceptance of the Under Frequency
	Alarm.

Loading Frequency

Loading Frequency		
Loading Frequency	🗘 45.0 Hz 💳	90.0%
Enable Alarm		Click to enable or disable the alarms. The
Action	Electrical Trip 🔻	relevant values below appear greyed out if
		the alarm is disabled.

Parameter	Description
Loading	This is the minimum frequency the generator must be operating at before the
Frequency	module considers it available to take the load. It is also the frequency above the
rioquonoy	under frequency trip that the generator output must return to before the module
	under-nequency inplinatine generator output must return to before the module
	considers that the supply is back within limits. (i.e., With an under-frequency trip
	of 42.0 Hz and a loading frequency of 45.0 Hz, the output frequency must return
	to 45.0 Hz following an under-frequency event to be considered within limits.)
Enable Alarm	I = Alarm is disabled.
	\blacksquare = Upon starting and after the Safety On Delay Timer expires, if the generator
	output frequency fails to reach the Loading Frequency set point, the Loading
	frequency Not Reached alarm is activated.
Action	Select the type of alarm required from the list:
	Electrical Trip
	Indication
	Shutdown
	Warning
	For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
Nominal Freque	ncy

Nominal Frequency			
	\$ 50.0	Hz	 100.0 %

Parameter	Description
Nominal Frequency	This is used to calculate the percentages of the alarm setpoints and instruct the module what frequency to adjust the generator to whilst running on load.

\

Over Frequency Alarms

Over Frequency Alarms	Type the value or click the up and down arrows to change the settings		
Return	54.0 Hz	<u> </u>	108.0%
Trip	55.0 Hz		110.0%
Alarm 🔽 Trip	\$ 57.0 Hz]	114.0%
Activation Delay 0s	0		

Parameter	Description
Generator Over Frequency	= Alarm is disabled
Pre-Alarm	\blacksquare = Generator Over Frequency gives a warning alarm in the event
IEEE C37.2 -81 Frequency Relay	of the generator output frequency rising above the configured Over
	frequency <i>Pre-Alarm Trip</i> value for longer than the <i>Activation Delay</i> .
	The <i>Warning</i> is automatically reset when the generator output
	frequency falls below the configured Return level.
	The Over Frequency Pre-Alarm Trip value is adjustable to suit user
	requirements.
Generator Over Frequency	= Alarm is disabled
Alarm	\blacksquare = Generator Over Frequency gives a <i>Shutdown</i> alarm in the event
IEEE C37.2 -81 Frequency Relay	of the generator output rising above the configured Over Frequency
	Alarm Trip value for longer than the Activation Delay. The Over
	Frequency Alarm Trip value is adjustable to suit user requirements.
Activation Delay	This is used to give a delay on acceptance of the Over Frequency
	Alarm.

Run Away

Run Away		
Run Away		
Trip	€ 60.0 Hz	120.0%

Parameter	Description
Run Away IEEE C37.2 -81 Frequency Relay	A NOTE: Only available if an electronic engine is connected.
	 = Alarm is disabled = In the event of the generator output frequency rising above the configured Trip value, the Run Away Shutdown alarm is immediately triggered. This is used to protect against engine damage due to uncontrolled speed increase, where the engine speed runs away.
Trip	Set the frequency level for the Run Away alarm.

Over Frequency Options

Over Frequency Options	
Over Frequency Overshoot % Overshoot Delay	0 0 0

Parameter	Description
Over Frequency Overshoot % IEEE C37.2 -81 Frequency Relay	To prevent spurious over-frequency alarms at start up, the module includes configurable Over Frequency Overshoot protection. This allows the frequency to 'overshoot' the Over-Frequency Shutdown level during the starting process for a short time.
Overshoot Delay	Rather than 'inhibiting' the Over Frequency alarms, the levels are temporarily raised by the Over Frequency Overshoot % for the duration of the Overshoot Delay from starting.

3.7.7 GENERATOR CURRENT

The *generator* section is subdivided into smaller sections. Select the required section with the mouse.

Generator Current
Generator Current Options
Generator Current Alarms

3.7.7.1 GENERATOR CURRENT OPTIONS

Generator Current Options				
CT Primary (L1,L2,L3,N)	\$ 600 A -			
CT Secondary	5 Amp 👻			
Full Load Rating	\$ 500 A			
Earth CT Primary	\$ 500 A			

Parameter	Description	
CT Primary (L1, L2, L3, N)	Primary rating of the three phase current transformers.	
CT Secondary	Secondary rating of all the current transformers, options are: 1 Amp 5 Amp	
Full Load Rating	This is the full load current rating of the alternator.	
Earth CT Primary	Primary rating of the earth fault current transformer.	

3.7.7.2 GENERATOR CURRENT ALARMS

Overcurrent Alarm

Overcurrent Alarm					
Immediate Warning	V				
IDMT Alarm	~		_	_	
Trip	÷	100	%	500	А
Time Multiplier	÷	36			
Action	Ele	ctrical	Trip 🔻		

The overcurrent alarm combines a simple warning trip level combined with a fully functioning IDMT curve for thermal protection.

Parameter	Description
Immediate Warning IEEE C37.2 -50 instantaneous overcurrent relay	If the <i>Immediate Warning</i> is enabled, the controller generates a <i>warning alarm</i> as soon as the <i>Trip</i> level is reached. The alarm automatically resets once the generator loading current falls below the <i>Trip</i> level (unless <i>All Warnings are latched</i> is enabled). For further advice, consult the generator supplier.
IDMT Alarm IEEE C37.2 -51 AC time overcurrent relay (shutdown / electrical trip)	If the Over Current IDMT Alarm is enabled, the controller begins following the IDMT 'curve' when the current on any phase passes the <i>Trip</i> setting.
	If the <i>Trip</i> is surpassed for an excess amount of time, the <i>IDMT Alarm</i> triggers (<i>Shutdown</i> or <i>Electrical Trip</i> as selected in <i>Action</i>).
	The larger the over current fault, the faster the trip. The speed of the trip is dependent upon the fixed formula: t
	$T = \frac{l}{\left(\frac{I_A}{I_T} - 1\right)^2}$
	Where:
	<i>T</i> is the tripping time in seconds I_A is the actual measured current of the most highly loaded line (L1, L2 or L3)
	I_T is the <i>Trip</i> setting in amps t is the <i>Time Multiplier</i> setting and represents the tripping time in
	seconds at twice full load (when $I_A/I_T = 2$).
Trip	The percentage of alternator full load current at which the IDMT Alarm curve starts to operate from.
Time Multiplier	The time multiplier constant throughout the IDMT curve. It also represents the tripping time in seconds at 200% alternator full load current.
Action	Select the type of alarm required from the list:
	Indication
	Shutdown
	Warning
	For details of these, see the section 5 entitled Alarm Types for more
	information.

Overcurrent Protection Explanation

The settings shown in the example below are a screen capture of the DSE factory settings, taken from the DSE Configuration Suite PC Software for a brushless alternator.

Overcurrent Alarm		Im (trip point setting in current)
Immediate Warning		
IDMT Alarm		
Trip	‡ 100 %	500 A
Time Multiplier	÷ 36	
Action	Electrical Trip 🔻	t (time multiplier setting)

These settings provide for normal running of the generator up to 100% full load. If full load is surpassed, the *Immediate Warning* alarm is triggered, and the set continues to run.

The effect of an overload on the generator is that the alternator windings begin to overheat; the aim of the *IDMT Alarm* is to prevent the windings being overload (heated) too much. The amount of time that the alternator is safely overloaded is governed by how high the overload condition is.

The default settings as shown above allow for an overload of the alternator to the limits of the *Typical Brushless Alternator* whereby 110% overload is permitted for 1 hour or 200% overload is permitted for 36 seconds.

If the alternator load reduces, the controller then *follows* a cooling curve. This means that a second overload condition may trip soon after the first as the controller *knows* if the windings have not cooled sufficiently.

For further details on the *Thermal Damage Curve* of your alternator, refer to the alternator manufacturer and generator supplier.

Creating A Spreadsheet For the Over Current IDMT Curve

The formula used:

$$T = \frac{t}{\left(\frac{I_A}{I_T} - 1\right)^2}$$

Where:

T is the tripping time in seconds

 I_A is the actual measured current of the most highly loaded line (L1, L2 or L3)

 I_T is the *Trip* setting in amps

t is the *Time Multiplier* setting and represents the tripping time in seconds at twice full load (when $I_A/I_m = 2$).

The equation is simplified for addition into a spreadsheet. This is useful for 'trying out' different values of t (*Time Multiplier* setting) and viewing the results, without testing this on the generator.

Over Current Alarm IDMT Curves

Page 101 of 348

Unbalanced Current Alarm

Unbalanced Curr	ent Alarm
Enable	
Action	Shutdown
Trip Level	¢ 20 %
Delay	0s

Unbalanced loads cause negative sequence current in the alternator stator. These currents cause harmonics which eventually lead to overheating and melting of the rotor. An unbalanced load is, however, permissible within limits.

For recommended settings contact your alternator manufacturer.

Parameter	
Enable	= The Unbalanced current alarm is disabled
IEEE C37.2 - 46 Phase- Balance Current Relay	✓ = The Unbalanced current alarm is enabled
Action	Select the type of alarm required from the list:
	Electrical Trip
	Shutdown
	Warning
	For details of these, see the section 5 entitled <i>Alarm Types</i> for more
	information.
Trip Level	The trip as a percentage of alternator full load current
Delay	Set the amount of time before the Negative Phase Sequence activates.

Short Circuit Alarm

Short Circuit	
Enabled Action	Electrical Trip
Trip 🔶 200 % 😑	1000.0 A
Time Multiplier	\$ 0.01

Parameter	Description
Short Circuit Enable	If the Short Circuit Alarm is enabled, the controller begins following the
IEEE C37.2 – 51 IDMT Short Circuit Relay	IDMT 'curve' when the current on any phase passes the <i>Trip</i> setting.
	If the <i>Trip</i> is surpassed for an excess amount of time, the <i>IDMT Alarm</i> triggers (<i>Shutdown</i> or <i>Electrical trip</i> as selected in <i>Action</i>).
	The larger the short circuit fault, the faster the trip. The speed of the trip is dependent upon the fixed formula:
	$T = \frac{t \times 0.14}{\left(\left(\frac{I_A}{I_T}\right)^{0.02} - 1\right)}$
	Where:
	T is the tripping time in seconds (accurate to ± 5 % or ± 50 ms
	(whichever is greater))
	I_A is the actual measured current
	$\vec{I_T}$ is the <i>Trip</i> setting in current
	t is the Time Multiplier setting
Action	Select the type of alarm required from the list:
	Electrical Trip
	Indication
	Shutdown
	Warning
	For details of these, see the section 5 entitled <i>Alarm Types</i> for more
	information.
Trip	The percentage of alternator full load current at which the IDMT Alarm
	curve starts to operate from.
Time Multiplier	The time multiplier constant throughout the IDMT curve.

Short Circuit Protection Explanation

The settings shown in the example below are a screen capture of the DSE factory settings, taken from the DSE Configuration Suite software.

NOTE: Due to large inrush currents from certain loads, such as motors or transformers, the default settings for the Short Circuit alarm may need adjusting to compensate for normal operating conditions.

The effect of a short circuit on the generator is that the alternator stator and rotor begin to overheat; the aim of the *IDMT alarm* is to prevent the stator and rotor being overload (heated) too much. The amount of time that the alternator is safely overloaded is governed by how high the short circuit condition is.

For further details on the *Thermal & Magnetic Damage Curve* of your alternator, refer to the alternator manufacturer and generator supplier.

Creating a Spreadsheet For the Short Circuit IDMT Curve

The formula used:

$$T = \frac{t \times 0.14}{\left(\left(\frac{I_A}{I_T}\right)^{0.02} - 1\right)}$$

Where:

T is the tripping time in seconds (accurate to ± 5 % or ± 50 ms (whichever is greater))

 I_A is the actual measured current

 I_T is the *Trip* setting in current

t is the *Time Multiplier* setting

The equation is simplified for addition into a spreadsheet. This is useful for 'trying out' different values of t (*time multiplier setting*) and viewing the results, without testing this on the generator.

The formula for the Tripping Time cells is:

```
∫x =($A2*0.14)/(POWER((B$1),0.02)-1) ¥
```


Short Circuit Alarm IDMT Curves

Earth Fault Alarm

Earth Fault		
Enable	7	
Action	Shutdown 💌	
Trip Level	10 % 50.0	
Time Multiplier	÷ 0.5	

When the module is suitably connected using the 'Earth Fault CT'. The module measures Earth Fault and optionally configured to generate an alarm condition (shutdown or electrical trip) when a specified level is surpassed.

Parameter	Description
Earth Fault Enable IEEE C37.2 – 51 IDMT Earth Fault Relay	If the <i>Earth Alarm</i> is enabled, the controller begins following the IDMT 'curve' when the current on any phase passes the <i>Trip</i> setting.
	If the <i>Trip</i> is surpassed for an excess amount of time, the <i>IDMT Alarm</i> triggers (<i>Shutdown</i> or <i>Electrical trip</i> as selected in <i>Action</i>).
	The larger the earth fault, the faster the trip. The speed of the trip is dependent upon the fixed formula:
	$T = \frac{t \times 0.14}{\left(\left(\frac{I_A}{I_T}\right)^{0.02} - 1\right)}$
	Where:
	T is the tripping time in seconds (accurate to ± 5 % or ± 50 ms
	(whichever is greater))
	I_A is the actual measured current
	<i>I_T</i> is the <i>Trip Level</i> setting in current
	t is the <i>Time Multiplier</i> setting
Action	Select the type of alarm required from the list:
	Electrical Trip
	Indication
	Shutdown
	Warning
	For details of these, see the section 5 entitled Alarm Types for more
l rip	I ne percentage of alternator full load current at which the IDMT Alarm
The AM REAL AND	curve starts to operate from.
I Ime Multiplier	I he time multiplier constant throughout the IDMT curve.

NOTE: The earth current trip will trip on the % of the full load current rating. For example if the CT rating is 750A and the full load current is at 500A then the Earth current at 10% will trip at 50A.

Earth Fault Protection Explanation

The settings shown in the example below are a screen capture of the DSE factory settings, taken from the DSE Configuration Suite software.

ANOTE: Due to unbalanced loads or certain types of load, such as an overloaded L1 or variable frequency drives, the default settings for the Earth Fault alarm may need adjusting to compensate for normal operating conditions.

Earth Fault	
Enable	I_T (trip point setting in current)
Action	Shutdown v
Trip Level	10 % 50.0 A
Time Multiplier	t (time multiplier setting)

Creating a Spreadsheet For the Earth Fault IDMT Curve

The formula used:

$$T = \frac{t \times 0.14}{\left(\left(\frac{I_A}{I_T}\right)^{0.02} - 1\right)}$$

Where:

T is the tripping time in seconds (accurate to ± 5 % or ± 50 ms (whichever is greater))

 I_A is the actual measured current

 I_T is the trip point setting in current

t is the time multiplier setting

The equation is simplified for addition into a spreadsheet. This is useful for 'trying out' different values of t (*time multiplier setting*) and viewing the results, without testing this on the generator.

The formula for the Tripping Time cells is:

∫x =(\$A2*0.14)/(POWER((B\$1),0.02)-1) ¥

Earth Fault Alarm IDMT Curves

----- Time Multiplier = 0.1 (Default Setting) ----- Time Multiplier = 0.2 ----- Time Multiplier = 0.4 ----- Time Multiplier = 0.8 ----- Time Multiplier = 1.6
3.7.7.2.1 DEFAULT CURRENT PROTECTION TRIPPING CHARACTERISTICS

The graph on the following page shows the default settings for the IDMT tripping curves for the *Over Current, Short Circuit* and *Earth Fault* protections.

The default setting for the *Over Current* alarm allows for an overload of an alternator to the limits of the *Typical Brushless Alternator* whereby 110% overload is permitted for 1 hour or 200% overload is permitted for 36 seconds. In an over current situation, the alternator begins to overheat. The aim of the *Over Current IDMT Alarm* is to prevent the windings being overloaded (heated) too much. The amount of time that the alternator is safely overloaded is governed by how high the overload condition is.

The default setting for the *Short Circuit* alarm allows for an alternator to supply a high current caused by a genuine short circuit or an inrush current of a motor or transformer. Whereby 300% overload is permitted for 0.17 seconds or 600% overload is permitted for 0.06 seconds. In a short circuit situation, the alternator begins to overheat to the point the insulation breaks down, potentially causing a fire. The aim of the *Short Circuit IDMT Alarm* is to prevent the insulation from melting due to excessive heat. The amount of time that the alternator is safely in a short circuit condition is governed by the alternator's construction.

The default setting for the *Earth Fault* alarm allows for an alternator to supply a fault current caused by an imbalanced load, a high impedance short to earth or motor drives. Whereby anything less than 10% is considered normal (caused by imbalanced loads) and permitted, 12% fault current is permitted for 3.83 second or 20% fault current is permitted for 1 second.

- -----Short Circuit IDMT Trip Curve with Time Multiplier = 0.01, Trip Point = 200% (Default Settings)
- Earth Fault IDMT Trip Curve with Time Multiplier = 0.1, Trip Point = 10% (Default Settings)

3.7.8 GENERATOR POWER

The *Generator Power* section is subdivided into smaller sections. Select the required section with the mouse.

Generator Power
Overload Protection
Load Control
Reverse Power
Low Load

3.7.8.1 OVERLOAD PROTECTION

Overload P	Protection
Pre-Alarm Trip Return Delay	90 % 180 kW \$ 80 % 160 kW 5s 1 1 1
Alarm Action Trip Delay	Shutdown 100 % 5s

Parameter	Description
Overload Protection	= Overload Protection Pre-Alarm is disabled.
Pre-Alarm	\blacksquare = The <i>kW</i> Overload Pre-Alarm activates when the kW level exceeds the
	<i>Trip</i> setting for longer than the configured <i>Delay</i> time. The <i>kW Overload</i>
	Pre-Alarm de-activates when the kW level falls below the Return setting.
Overload Protection	= Overload Protection Alarm is disabled.
Alarm	\blacksquare = The <i>kW</i> Overload Alarm activates when the kW level exceeds the <i>Trip</i>
	setting for longer than the configured <i>Delay</i> time.
Action	Select the action for the kW Overload Alarm:
	Electrical Trip
	Shutdown

3.7.8.2 LOAD CONTROL

Dummy Load Control

Parameter	Description
Dummy Load	Provides control of configurable outputs set to Dummy Load Control.
Control Enable	□ = Dummy Load Control is disabled.
	$\mathbf{\Sigma}$ = The module monitors the load and controls outputs configured to <i>Dummy</i>
	Load Control (1 to 5).
Outputs in	The amount of Dummy Load Control outputs that are included in the function.
Scheme	
Trip / Trip Delay	When the load level is below the <i>Trip</i> setting for the duration of the <i>Trip Delay</i> ,
	then the 'next' output configured to <i>Dummy Load Control</i> is activated (max 5)
Return / Return	When the load level rises above the <i>Return</i> level for the duration of the
Delay	Return Delay, then the 'highest numbered' output configured to Dummy Load
	Control is de-activated, and the timer is reset.

Load Shedding Control

ſ	Load Shedding Control				
	Enable 🔲				
	Outputs in Scheme Outputs at Start	<pre> 1 1 1 </pre>			
	Trip Trip Delay	<mark>\$ 80</mark> %	0	276	kW
	Return Return Delay	<u>70</u> %		241	kW
	Transfer Time / Load Delay	0.7s			

Parameter	Description
Load Shedding	Provides control of configurable outputs set to Load Shedding Control.
Control Enable	= Load Shedding Control is disabled.
	\blacksquare = The module monitors the load and controls any outputs configured to
	Load Shedding Control (1 to 5).
Outputs in	The number of outputs (max 5) that are included in the function.
Scheme	
Outputs at Start	The number of outputs configured to Load Shedding Control (1 to 5) that are
	energised before set is required to take load.
Trip / Trip Delay	When the load level is above the <i>Trip</i> setting for the duration of the <i>Trip Delay</i> ,
	then the 'next' output configured to Load Shedding Control is activated (max 5)
Return / Return	When the load level is below the <i>Return</i> setting for the duration of the <i>Return</i>
Delay	Delay, then the 'highest numbered' output configured to Load Shedding
	Control is de-activated, and the timer is reset.

3.7.8.3 REVERSE POWER

Reverse Power Alarm			
Enabled 🛽	7		
Action	Electrical Trip 💌		
Trip	\$ 35 kW		
Delay	2.0s		

Parameter	Description
Reverse Power	□= Generator Reverse Power Alarm is disabled.
Alarm Enable IEEE C37.2 – 32 Directional Power Relay	☑= The Generator Reverse Power Alarm activates when the reverse power exceeds the Reverse Power Trip setting longer than the configured Delay time.
	This is used to protect against back feed from electric motors when mechanically overpowered.
Action	Select the action for the Reverse Power Alarm:
	Electrical Trip
	Indication
	Shutdown
	Warning

3.7.8.4 LOW LOAD

Low Load Alarm				
Enabled 🔽				
Description	Low Load			
Trip	* 30 %]		
Delay	1m]		

Parameter	Description
Low Load Alarm	□ = Low Load Alarm is disabled.
Enable	☑ = The Low Load Alarm activates when the generator power drops below the
	configured Trip setting longer than the configured Delay time. This is used to
	prevent the engine from running at very low load levels.
Description	Enter the LCD text that shows up on the display when this alarm activates.
Trip	Set the percentage of total power at which the Low Load Alarm is activated.
Delay	Set the amount of time before the Low Load Alarm activates.

3.7.9 SYNCHRONISING

The *Synchronising* section is subdivided into smaller sections. Select the required section with the mouse.

3.7.9.1 SYNC OPTIONS

<u>Options</u>

Synchronising Mode	Slip Sync	-
Persistent Governor Output	[[]]	
Persistent AVR Output		
Sync Lock Dwell Time	1.0s	1

Parameter	Description
Synchronising Mode	The following options are available.
	<i>Sync Lock:</i> This is used to hold a generator in sync with another ac source without closing the breaker.
	Disabled: Synchronising control disabled.
	<i>Slip Sync:</i> The ac source under control will be driven past the second source and the breaker will close when the settings criteria are met.
Persistent Governor Output	Configures the action to take when transitioning from Synchronising to Load Sharing (at the point of closing the load switch device into parallel with another supply). □ = Analogue GOV output resets to Centre (SW1 setting) when the load switch device is closed. ☑ = Analogue GOV output retains the value achieved during the synchronising process.
Persistent AVR Output	Configures the action to take when transitioning from Synchronising to Load Sharing (at the point of closing the load switch device into parallel with another supply). □ = Analogue AVR output resets to Centre (SW1 setting) when the load switch device is closed. ☑ = Analogue AVR output retains the value achieved during the synchronising process.
Sync Lock Dwell Time	The time the ac sources must remain within the sync window before the breaker is closed.

<u>Governor</u>

	Governor		
	Interface Output Reverse	ed Voltage	Z
	Action	Adjust To Nominal Frequency)
Parameter Governor Inte	erface	Description the range will be from -2.5v to 7.5v Select the desired interface setting: from -2.5v to 7.5v 0-20mA 0.10v to +10v limits)	\mathcal{A}
Governor Ou	tput Reversed	\square = Lower analogue output voltage equates to lower engine speed. \square = Lower analogue output voltage equates to higher engine speed.	
Action		A NOTE: This determines the modules frequency control when the generator is running on load and not in parallel.	
		<i>Adjust to Centre Point:</i> When the generator's switchgear has closed, the generator's frequency is pre-determined by <i>SW1</i> setting for the governor. Refer to section 4.9.4 entitled <i>Governor / AVR Interface</i> in this document for further information about the <i>SW1</i> setting.	
		Adjust to Nominal: When the generator's switchgear has closed, the generator's frequency is continually adjusted to the <i>Nominal Frequency</i> setting for the generator. Refer to section 3.7.6 entitled <i>Generator Frequency</i> in this document for further information about the <i>Nominal Frequency</i> setting.	
		<i>None:</i> When the generator's switchgear has closed, the generator's frequency is not controlled by the module. The frequency control is achieved using external 3 rd party equipment.	

<u>AVR</u>

AVR		
Output	Voltage	•
Output Reversed		
Action	Adjust To Nominal Voltage	•

Parameter	Description
AVR Output	Select the desired interface setting:
	0-20mA
	4-20 mA
	Voltage
	None: The module does not interface with the generator's AVR, voltage and kvar control is achieved using external 3 rd party equipment.
AVR Output Reversed	A NOTE: Only available when internal analogue is selected. This allows the module to interface with a greater diversity of AVRs.
	 = Lower analogue output voltage equates to lower alternator voltage. = Lower analogue output voltage equates to higher alternator
	Voltage.
Action	A NOTE: This setting determines the voltage control when the generator is running on load and not in parallel only.
	Adjust to Centre Point: When the generator's switchgear has closed, the generator's voltage is pre-determined by <i>SW1</i> setting for the AVR. Refer to section 4.9.3 entitled <i>Governor / AVR Interface</i> in this document for further information about the <i>SW1</i> setting.
	Adjust to Nominal Voltage: When the generator's switchgear has closed, the generator's voltage is pre-determined by <i>Nominal Voltage</i> setting for the generator. Refer to section 3.7.4 entitled <i>Generator Voltage</i> in this document for further information about the <i>Nominal Voltage</i> setting.
	<i>None:</i> When the generator's switchgear has closed, the generator's voltage is not controlled by the module. The voltage control is achieved using external 3 rd party equipment.

3.7.9.2 CHECK SYNC

Dead Bus

Dead Bus (M	ulti Set)			
Voltage Delay	\$ 51 0.0s	V PhPh	0	51V PhPh

Dead Bus detection is used in two scenarios:

- If the bus is dead, controller(s) communicate over the AMSC link to determine which one closes to the dead bus. If the bus is live, synchronisation takes place before the load switch is closed.
- Upon closing the load switch, the bus must be seen to be 'not dead' a short time later.

ANOTE: If a module on the AMSC indicates that the segment is live, and the module measures a dead bus an alarm is raised.

Parameter	Description
Voltage	The voltage below which the bus is assumed to be 'dead'.
Delay	When the load switch is closed, the bus voltage is measured a short time later, determined by <i>Delay</i> . If the bus voltage is below the level of the <i>Dead Bus Voltage</i> setting, the <i>Bus Not Live</i> electrical trip alarm is raised

Check Sync

Check Sync			
Low Frequency High Frequency Voltage Phase Angle	 -0.10 H: 0.20 H: 3 V 5 	tz	3V PhPh

During the synchronising process, the controller adjusts the frequency and voltage of the generator to closely match the existing bus. Typically, the oncoming set is adjusted to be 0.1 Hz faster than the existing supply, this causes the phase of the two supplies to change continuously.

Before the breaker is closed, the following configurable conditions must be met.

Parameter	Description
Low Frequency	The difference between the two supplies frequencies must be between the
High Frequency	Check Sync Low Frequency and Check Sync High Frequency.
Voltage	The difference between the two supply voltages must be equal to or below the
-	Check Sync Voltage. Where different nominal voltages are used (e.g., when a
	transformer is present) the proportional difference is calculated.
Phase Angle	The phase of the two supplies must be equal to or below the Check Sync Phase
	Angle.

Fail to Sync Alarm

Fail To Sync Alarm	Sync Alarm		
Action Electrical Trip Delay 1m	Electrical Trip 🔻	0	

Used to detect that the synchronising process is taking a long time. This occurs when changes in the load are making the set control difficult due to changes in voltage and frequency.

Parameter	Description
Action	Determines the action to take upon a Fail to Sync.
	Electrical Trip: The set is stopped. In a Load Demand scheme, other
	generators start if available.
	Indication: The set continues to synchronise, and no alarm is raised. This is
	used for internal use, such as in the PLC Logic or Virtual LEDs.
	Warning: The set continues to attempt to synchronise.
Delay	The time to allow for successful synchronisation to take place. If the process
	continues longer than <i>Delay</i> , the <i>Action</i> above is taken.

3.7.9.3 AMSC LINK

NOTE: The AMSC Link Alarms are disabled by a digital input configured to AMSC Alarms Inhibit if required.

ANOTE: When the Redundant AMSC link (AMSC 2) is enabled but AMSC1 is not wired then a warning alarm will be triggered.

AMSC Link

NVIDC LINK	
AMSC Failure Action	Warning 👻
AMSC Alarms Disabled Action	None 🔻
Too few modules action	None 🔻
Minimum modules on AMSC link	1
Enable Redundant AMSC Link	
Disable Auto ID Allocation AMSC ID	1
Bus Segment Number	1
Bus Sensing Failure Action	Warning 🔻

Parameter	Description
AMSC Failure	Action upon AMSC Link Failure:
Action	
	<i>Electrical Trip:</i> The breaker is opened immediately, and the cooling timer
	begins, after which the set is stopped.
	Indication: The set continues to run, and no alarm is raised. This is used for
	internal use, such as in the PLC Logic or Virtual LEDs.
	Warning: The set continues to run, and a warning alarm is activated.
AMSC Alarms	Action to take when the AMSC alarms are disabled by a digital input:
Disabled Action	
	<i>Indication:</i> The set continues to run, and no alarm is raised. This is used for
	internal use, such as in the PLC Logic or Virtual LEDs.
	None: Alarm is disabled.
	Warning: The set continues to run, and a warning alarm is activated.
Too Few	Action to take when the number of modules active on the AMSC link is lower
Modules Action	than the Minimum Modules on AMSC link setting.
	Ŭ
	<i>Electrical Trip:</i> The breaker is opened immediately, and the cooling timer
	begins, after which the set is stopped.
	<i>Indication:</i> The set continues to run, and no alarm is raised. This is used for
	internal use, such as in the PLC Logic or Virtual LEDs.
	None: Alarm is disabled and the output source.
	Warning: The set continues to run, and a warning alarm is activated.
Demonsterne entitiere	

Parameters continued overleaf...

Parameter	Description
Minimum	Set the minimum number of modules on the AMSC before the <i>Too Few</i>
Modules On	Modules alarm is activated. The maximum number of Minimum Modules is 32.
AMSC Link	
Enable	= Only one Multi-Set Comms (AMSC) Link is active.
Redundant	☑ = This activates the second (redundant) Multi-Set Comms (AMSC) Link,
AMSC Link	allowing for communications redundancy between the controllers.
Disable Auto ID	\Box = The AMSC system assigns the AMSC ID automatically when the DSE
Allocation	module powered over the AMSC network.
	\square = The AMSC system does not assign the AMSC ID automatically when the
	DSE module is powered up, instead the DSE module uses the AMSC ID
	number configured in this section up to a maximum of 64.
Bus Segment	
Number	WARNING!: This is critical for safe control!
	<u>"</u>
	Each section of the ac bus requires a unique identifier number. All modules
	connected to the same section or segment must have the same number.A
	maximum of 64 Bus Segment Numbers are used.
Bus Sensing	<i>Electrical Trip:</i> The breaker is opened immediately, and the cooling timer
Failure Action	begins, after which the set is stopped.
	Shutdown: The breaker is opened immediately, and the set is immediately
	stopped.
	Warning: The set continues to run, and a warning alarm is activated.
	A NOTE: The Dead Bus voltage is used as the threshold for Bus
	Sensing Failure.

3.7.9.4 LOAD CONTROL

Load Control

Load Control (Multi Set)

Load Control (Single Set)

Load Demand (Multi Set)

CNOTE: The *Minimum Load Level* and *Maximum Load Level* are configured within the SCADA section. For further details, refer to section 4.9.7 entitled *Load Levels* contained within the *SCADA* section for more information.

When any of the following *Load Control* modes are selected, the controller performs a 'soft' load transfer when taking or removing load.

Upon generator's switchgear closing, the module controls the generators power production starting from the *Minimum Load Level* setting. Load is then applied to the generator at the configured *Ramp Up Rate.* The ramping continues until generator is producing an equal percentage of full load power as the other generators on the bus, or to the *Maximum Load Level* when running in *Mains Parallel Mode.*

When a paralleled generator leaves the bus, the load is ramped down to the *Minimum Load Level* at the configured *Ramp Down Rate.* The generator's switchgear is opened once the *Minimum Load Level or Ramp Minimum time* to *Ramp Down* has been attained, removing the generator from the bus.

'Soft' load transfers of this type have many benefits, the most obvious are:

- When the generator is removed from the bus, other sets in the system are not suddenly loaded with the load that was being supplied by the generator being removed. Instead, the load is slowly ramped, allowing time for the remaining sets to take up their share of the load.
- Opening of the load switch occurs at a much lower load level, helping to reduce arcing of the contacts.

3.7.9.4.1 LOAD CONTROL (MULTI SET)

Load Options	
Load Control Mode kW	Share 🔻
Enable Droop on AMSC Failure	
AMSC Return Timer	0s 🗧
Control Curve	3.33% Droop: 2.5% Nominal Offset 👻 Edit
Ramp Rate	0.1 % %/s
Reactive Load Control Mode KVA Enable Droop on AMSC Failure	Ar Share
AMSC Return Timer	0s
Control Curve	4.73% Droop: -33%,3.6% Offset
Ramp Rate	¢ 0.1 % %/s

Parameter	Description	
Load Control Mode IEEE C37.2 -90 Regulating device	NOTE: The module automatically switches from <i>kW Load</i> <i>Control</i> mode to <i>kW Power Control</i> mode when an input configured for <i>Mains Parallel Mode</i> is active. Refer to section entitled 3.7.9.6 <i>Power Control</i> in this document for further details.	
	Droop: The module synchronises the generator to the generator bus and controls the kW load sharing using droop. Droop based kW load sharing ensures that the generators produce an equal percentage of kW by varying frequency. Droop based kW load sharing is possible between generators that are not fitted with DSE modules and have frequency droop enabled.	
	<i>kW Share:</i> The module synchronises the generator to the generator bus and controls the kW load sharing isochronously between DSE modules. Isochronous kW load sharing ensures that the generators produce an equal percentage of kW whilst maintaining nominal frequency. Isochronous kW load sharing is only possible when using the AMSC link between DSE modules.	
	<i>kW Share + Droop:</i> The module synchronises the generator to the generator bus and controls the kW load sharing isochronously between DSE modules. The kW load control is switched from isochronous to droop either by activating a digital input, AMSC Failure or GenComm request based upon user configuration.	
	<i>None:</i> The module synchronises the generator to the generator bus but once in parallel, does not actively control the kW load sharing. This is left to external 3 rd party devices such as external load share controller or droop configured on the engine governor.	

Parameter	Description
Enable Droop on AMSC Failure	A NOTE: Only available when <i>Load Control Mode</i> is configured as <i>kW Share</i> + <i>Droop.</i>
	A NOTE: This option should not be used when bank controllers are included as part of the system as an AMSC failure is only visible on the primary bus and sets on the Group bus will continue to run in load share mode (or vice versa).
	 □ = It is not possible to switch kW isochronous to droop load sharing by when the AMSC link fails. ☑ = The module switches from kW isochronous to droop load sharing when the AMSC link fails. The module reverts to kW isochronous load sharing once the AMSC link returns for longer than the AMSC Return Timer.
AMSC Return Timer	The timer waits for a set value in seconds for the AMSC alarms to clear to allow the module to switch back to kW isochronous load sharing.
Control Curve	NOTE: It is advised that all generators in the system have the same droop curve configured to ensure equal percentage of kW load sharing between them.
	Select the required droop curve from a pre-defined list or create a user-defined curve. <i>Droop</i> is the percentage of nominal frequency that the generator's frequency decreases by as the load varies from 0 % to 100 % of the kW rating of the generator
	Nominal Offset is the percentage above/below the nominal frequency in which the droop starts from. A Droop of 5% with a Nominal Offset of 3% on a 50 Hz system would result in the generator running at 51.5 Hz (103% of nominal) at 0 % kW and 49 Hz (98% of nominal) at 100 % kW with a linear change between them.
Ramp Rate	The rate at which the generator kW is ramped onto and off the load when using Droop.

Editing the Configuration

Parameter	Description
Reactive Load Control	
Mode	A NOTE: <i>Reactive Load Control Mode</i> is forced to <i>None</i> when
IEEE C37.2 -90 Regulating device	Load Control Mode set to None.
	NOTE: The module automatically switches from <i>kvar Load</i> <i>Control</i> mode to <i>kvar Power Control</i> mode when an input configured for <i>Mains Parallel Mode</i> is active. Refer to section 3.7.9.6 entitled <i>Power Control</i> in this document for further details.
	Droop: The module synchronises the generator to the generator bus and controls the kvar load sharing using droop. Droop based kvar load sharing ensures that the generators produce an equal percentage of kvar by varying voltage. Droop based kvar load sharing is possible between generators that are not fitted with DSE modules also have voltage droop enabled.
	<i>kvar Control:</i> The module synchronises the generator to the generator bus and controls the kvar by forcing it to a pre-determined value.
	<i>kvar Share:</i> The module synchronises the generator to the generator bus and controls the kvar load sharing between DSE modules. Isochronous kvar load sharing ensures that the generators produce an equal percentage of kvar whilst maintaining nominal voltage. kvar load sharing is only possible when using the AMSC link between DSE modules.
	kvar Share + Droop: The module synchronises the generator to the generator bus and controls the kvar load sharing between DSE modules. The kvar load control is switched from isochronous to droop either by activating a digital input, AMSC Failure or GenComm request based upon user configuration.
	<i>None:</i> The module synchronises the generator to the generator bus but once in parallel, does not actively control the kvar load sharing. This is left to external 3 rd party devices such as external load share controller or droop configured on the alternator AVR.
Enable Droop on AMSC Failure	A NOTE: Only available when <i>Load Control Mode</i> is configured as <i>kvar Share</i> + <i>Droop</i> .
	□ = It is not possible to switch kvar to droop load sharing by when the AMSC link fails. ☑ = The module switches from kvar to droop load sharing when the AMSC link fails. The module reverts to kvar isochronous load sharing once the AMSC link returns for longer than the AMSC Return Timer.
AMSC Return Timer	The timer waits for a set value in seconds for the AMSC link to return to allow the module to switch back to kvar load sharing.

Editing the Configuration

Parameter	Description
Control Curve	A NOTE: It is advised that all generators in the system have the same droop curve configured to ensure equal percentage of kvar load sharing between them.
	Select the required droop curve from a pre-defined list or create a user-defined curve.
	<i>Droop</i> is the percentage of nominal voltage that the generator's voltage decreases by as the load varies from 0 % to 100 % of the kvar rating of the generator.
	<i>Nominal Offset</i> is the percentage above/below the nominal voltage in which the droop starts from.
	A <i>Droop</i> of 5% with a <i>Nominal Offset</i> of 3% on a 400 V system would result in the generator running at 412 V (103% of nominal) at 0 % kvar and 392 V (98% of nominal) at 100 % kvar with a linear change between them.
Ramp Rate	The rate at which the generator kvar is ramped onto and off the load when using Droop.

Load Share Ramp

Load Share Ramp				
Ramp Up Rate	3 .0	%	0	%/s
Ramp Down Rate	÷ 3.0	%	<u>[</u>	%/s
Maximum Time to Ramp Down	20s			

Parameter	Description	
Ramp Up Rate	NOTE: The set initially takes load at the level set by the <i>Minimum Load Level</i> and then increases its load at this rate until the generated power is equal to the setting for <i>Load Parallel Power</i> .	
	The percentage rate at which the generator is ramped onto the load.	
Ramp Down Rate	A NOTE: When the set is unloaded, it ramps down at this rate from the current load level to the level set by the <i>Minimum Load Level</i> before being removed from the bus.	
	The percentage rate at which the generator is ramped off the load.	
Maximum Time to Ramp Down	This is to set a time limit to the ramp down process, and it is useful when the engine response is slow or is not capable to ramp off the load.	
	The <i>Ramp Off Load</i> timer starts when the generator begins to ramp down. When this timer is expired the breaker opens regardless of the actual power.	
	It is possible to set the ramp rate slower than this time, so the breaker opens prior to the ramp finishes.	

Example

There is a requirement for a ramp down rate from 100 to 0% during a period of 20 secs. This is calculated as follows.

Ramp Down Rate = Ramp Down Rate %	
Time Period (secs)	

<u>G0123</u>

G0123	
G0123 Ramp Enabled G0123 Frequency Trip	C 0.1 Hz

Parameter	Description		
G0123 Ramp	□ = When disabled, the G8600 will never attempt to ramp loads when there is		
Enabled	a G0123 in use.		
	\blacksquare = When enabled, the G8600 will attempt to ramp loads when there is a		
	G0123 in use.		
G0123	(Only available if the G0123 Ramp option is enabled)		
Frequency Trip	If the frequency changes by this amount when ramping down, the		
	module will open the generator breaker to avoid the frequency ramping to the		
	point where an alarm trips.		

NOTE: It is the user's responsibility to ensure the generator on the analogue load share lines is on load and not in fixed power mode, otherwise ramping will cause the frequency to ramp until an alarm trips.

3.7.9.4.2 LOAD CONTROL (SINGLE SET)

Load Options	
Load Control Mode	kW Control 🔻
Reactive Load Control Mode	kVAr Control 💌

Parameter	Description
Load Control Mode IEEE C37.2 -90 Regulating device	 <i>kW Control:</i> The module synchronises the generator to the mains and controls the kW by forcing it to a pre-determined value. <i>None:</i> The module synchronises the generator to the mains but once in parallel, does not actively control the amount of kW's This is left to external 3rd party devices such as an external kW controller or droop configured on the engine controller.
Reactive Load Control Mode	NOTE: Reactive Load Control Mode is forced to None when Load Control Mode set to None.
	<i>kvar Control:</i> The module synchronises the generator to the mains and controls the kvar by forcing it to a pre-determined value.
	<i>None:</i> The module synchronises the generator to the mains but once in parallel, does not actively control the amount of kvar's. This is left to external 3 rd party devices such as an external kvar controller or droop configured on the alternator AVR.

Editing the Configuration

Load Share Ramp

Load Share Ramp		
Ramp Up Rate	\$ 3.0	% 🗍 %/s
Ramp Down Rate	÷ 3.0	% 🗍 %/s
Maximum Time to Ramp Down	20s	

Parameter	Description
Ramp Up Rate	A NOTE: The set initially takes load at the level set by the <i>Minimum Load Level</i> and then increases its load at this rate until the generated power is equal to the setting for <i>Load Parallel Power</i> .
Ramp Down Rate	NOTE: When the set is unloaded, it ramps down at this rate from the current load level to the level set by the <i>Minimum Load Level</i> before being removed from the bus.
Maximum Time to Ramp Down	This is to set a time limit to the ramp down process, and it is useful when the engine response is slow or is not capable to ramp off the load.
	The Ramp Off Load timer starts when the generator begins to ramp down. When this timer is expired the breaker opens regardless of the actual power.
	It is possible to set the ramp rate slower than this time, so the breaker opens prior to the ramp finishes.

3.7.9.4.3 LOAD DEMAND (MULTI SET)

New Load Demand Scheme

ANOTE: The G8600 software AMSC is not compatible with MSC. For more information contact DSE Technical Support <u>support@deepseaelectronics.com</u>

The module is included in the *Load Demand Scheme* by activating a digital input configured as *Remote Start On Load Demand (Multi-Set).* Every *Multi Set* module connected on the AMSC link which is required to run in the *Load Demand Scheme* must have a digital input configured for *Remote Start On Load Demand (Multi-Set)* and be active. Having this input on each *Multi Set* module enables a specific generator to be taken out of the *Load Demand Scheme* for service for maintenance (by deactivating the input) whilst allowing the remainder of the system to operate.

Upon activation of the *Remote Start On Load Demand (Multi-Set)* input, all the generators in the system start only if 'Starting Option' is set to *Start all sets initially*. The first generator to become available closes onto the dead bus, communicating with the other generators to instruct them to synchronise onto the now live bus, before closing in parallel. If too much generator capacity is available to supply the load, the generators that are not required begin their *Return Delay* timers, after which they will ramp off the bus and stop.

Whilst one or more generators are already available in *Load Demand Scheme*, it may be required to make all the generators in the system available to provide power to the load. For instance, this may be necessary prior to switching on a large load that the currently available generators are not able to supply. To provide this function, a digital input on each *Multi Set* module in the system must be configured to activate the *Remote start on load* input. Activating this input causes *Multi Set* module to start its generator, synchronise with the bus, and close in parallel.

The generators continue to provide power until the *Remote Start On Load Demand (Multi-Set)* input is de-activated. Providing the *Remote Start On Load Demand (Multi-Set)* input is still active on all the *Multi Set* modules, the *Load Demand Scheme* ramps the un-required generators off the bus, depending upon the total load level.

Load Demand Scheme

Load Demand Scheme			
Starting options	Start all sets in	itially 🔻	
Load/start next set on warning			
Allow set to start with warning			
Balance engine hours			
Hours 167	-0		
Load Demand Scheme Delay	1s]	
Calling for less sets	‡ 70	%	-0
Calling for more sets	\$ 80	%	
Start Delay	0s	0	
Stop Delay	Os	0	

Parameter	Description
Starting Options	Determines how the load demand scheme operates upon start-up.
	Continuous Running, Load all Initially: Upon activation of the load demand scheme, all sets in the system start up and parallel onto the generator bus. As load demands, sets go off load / on load. The set continues to run regardless of load levels until requested to stop.
	Continuous Running, Load as Required: Upon activation of the load demand scheme, all available sets start initially. The sets go on/off load as required by the Load demand Scheme. The set continues to run regardless of load levels until requested to stop.
	Disabled: The load demand is disabled so sets will not start.
	Start all sets initially: Upon activation of the load demand scheme, all sets in the system start up and parallel onto the generator bus. As load demands sets start / stop. This option is particularly recommended in Multi Set Mains standby applications where the load is likely to be greater than the capacity of a single set.
	<i>Start sets as load requires:</i> Upon activation of the load demand scheme, only one set will start initially. Other sets in the system are only started according to demand. This option is recommended for mutual standby systems where the load is likely to be less than the capacity of a single set.
Enable	Select when load demand scheme becomes active:
	Always Never On Input
Load/Start Next Set	
on Warning	ANOTE: Enabling <i>Start Next Set on Warning</i> results in the <i>All Warnings are Latched</i> option being forced on.
	Whenever a warning occurs, a start/load command is issued over the AMSC link to start the next highest priority set. The set with the warning stops (and will not re-start) once the next highest priority set has joined the bus.

Parameter	Description
Allow Set to Start with	\Box = If the AMSC calls to start another set, generators which display a
Warning	warning status alarm remain at rest, only generators with no warning
	alarm are started according to their priority number.
	$\mathbf{\nabla}$ = Allows a stationary generator with a warning alarm to start if
	requested only after all sets without a warning are started.
Balance Engine Hours	Used in a Multiset system so that the engine's priority changes according
Balance Engine Hours	to the amount of usage of the set
	For instance, in a two-set system
	Set 1 has logged 100 running hours
	Set 2 has logged 20 rupping hours
	Balance engine hours are configured to 75 hours
	balance engine nouis are configured to 75 hours.
	As Set 2 has logged 90 hours loss than Set 1. As this is greater than the
	As Set 2 has logged ou hours less than Set 1. As this is greater than the
	conligured 75 hours, Set 2 is the highest phonty set.
	If all acts are within the configured Delence Engine Llaws value, then the
	If all sets are within the configured Balance Engine Hours value, then the
	set with the minimum number of nours is started.
Load Demand	Time for sets joining the bus (when the scheme is started) for Start All
Scheme Delay	Sets Initially option. This allows smooth changeover between sets.
Calling For Less Sets	The kW % level at which the module decides that generator is
	disconnected from the generator bus. The generator does not disconnect
	from the bus when its percentage of kW is below the Calling For Less
	Sets value. Instead, the generator disconnects from the bus when it
	ensures that the remaining generators' kW percentage is at the <i>Calling</i>
	For Less Sets value when it disconnects. This prevents the system from
	reaching a point where the load is such that the generator starts and
	stops repeatedly.
	Once the load is below this level, the lowest priority generator in the
	sequence (determined using the Genset Priority) begins its Return Delay
	timer. Once this has expired, the generator ramps off and stops
	If the load level rises above this set point during the Return Delay timer
	the timer is cancelled, and the generator continues to supply power to the
	Load This enters for short term reductions in <i>k</i> / <i>M</i> load demand
Calling Fac Mana Cata	The LVM 02 level et utilet the medule cells for edditional generators to join
Calling For More Sets	The KWW % level at which the module calls for additional generators to join
	the generator bus.
	Once the load is above this level, the highest priority generator that is not
	running in the sequence (determined using the Genset Priority) begins its
	Start Delay timer. Once this has expired, the generator joins the bus and
	ramps up.
	If the load level reduces below this set point during the <i>Start Delay</i> timer,
	the timer is cancelled, and the generator enters its stops cycle. This
	caters for short term kW load demand.
	If the set fails to become available, it communicates this using the AMSC
	Link which signals the next generator in the sequence to take its place.
Start Delav	Time delay used at start up to ensure the start request is not simply a
	fleeting request.
Stop Delay	Time delay used to before a stop cycle is initiated

Editing the Configuration

Spinning Capacity

Spinning Capacity	
Enable Spinning Capacity	C
Not Reached Alarm	
Action	•
Delay	0s

Parameter	Description
Enable	□= Spinning capacity is disabled.
Spinning Capacity	The minimum power that will be available on the bus. The scheme
	will always run enough sets to exceed this value regardless of load
	and the Calling For Less Sets setting.
Not Reached Alarms	An alarm is generated when the spinning capacity cannot be
	achieved.
Action	Select the action for the Not Reached Alarm:
	Indication:
	Warning:
Delay	Set the amount of time before the Spinning Capacity Alarm
	activates.

Spinning Reserve

Spinning Reserve		
Enable Spinning Reserve	to kw	0
Not Reached Alarm		
Action		•
Delay	0s	0

Parameter	Description
Enable	= Spinning reserve is disabled.
	☑= Spinning reserve is enabled.
Spinning Reserve	The power available over and above the load requirements on the
	bus. The load demand scheme will start further sets to ensure that
Not Reached Alarms	This is to set a time limit to the ramp down process, and it is useful
	when the engine response is slow or is not capable to ramp off the
	load.
	The Ramp Off Load timer starts when the generator begins to ramp
	down. When this timer is expired the breaker opens regardless of the actual power.
	It is possible to set the ramp rate slower than this time, so the
	breaker opens prior to the ramp finishes.
Action	Select the action for the Not Reached Alarm:
	Indication:
	Warning:
Delay	Set the amount of time before the Spinning Reserve Alarm activates.

ANOTE: The G8600 software AMSC is not compatible with MSC. For more information contact DSE Technical Support <u>support@deepseaelectronics.com</u>

Editing the Configuration

bad Demand Scheme			
Starting options	Start all sets initial	ly 👻	
Load/start next set on warning			
Allow set to start with warning			
Balance engine hours			
Hours 167	-8		9
Load Demand Scheme Delay	1s	0	
Calling for less sets	* 70 %	-	
Calling for more sets	\$ 80 %		
Start Delay	Os	0	
Stop Delay	0s	1	

Parameter	Description
Starting Options	Determines how the load demand scheme operates upon start-up.
	Continuous Running, Load all Initially: Upon activation of the load
	demand scheme, all sets in the system start up and parallel onto the
	generator bus. As load demands, sets go off load / on load. The set
	continues to run regardless of load levels until requested to stop.
	Continuous Running, Load as Required: Upon activation of the load
	demand scheme, all sets start, and one set will go on load. Other sets in
	the system are only started according to demand. As load demands, sets
	become off load / on load. The set continues to run regardless of load
	levels until requested to stop.
	Disabled: The Load Demand Scheme is disabled so no sets will start.
	Start all sets initially: Upon activation of the load demand scheme. all
	sets in the system start up and parallel onto the generator bus. As load
	demands sets start / stop. This option is particularly recommended in
	Multiset Mains standby applications where the load is likely to be greater
	than the capacity of a single set.
	Start sets as load requires: Upon activation of the load demand
	scheme, only one set will start initially. Other sets in the system are only
	started according to demand. This option is recommended for mutual
	standby systems where the load is likely to be less than the capacity of a
	single set.
Load/Start Next Set	
on Warning	AANOIE: Enabling Start Next Set on Warning results in the All
	warnings are Latched option being forced on.
	Whenever a warning occurs, a start/load command is issued over the
	AMSC link to start the next highest priority set. The set with the warning
	stops once the next highest priority set has joined the bus and will not
	restart.

Allow Set to Start with Warning	Parameter	Description
Warning part of the load demand scheme and so will not be called on to start. Image: A stationary set with a warning alarm active will be considered part of the load demand scheme and may be called on to start if the load requires it. Balance Engine Hours Used in a Multi Set system so that the engine's priority changes according to the amount of usage of the set. For instance, in a two-set system. Set 1 has logged 100 running hours Set 2 has logged 20 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator disconnects from the bus when it ensures that the remaining generators KW percentage is at the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the calling For Less Sets and the calling for Less Sets value. Used at the claus when it disconnects from the bus when it ensures that the cealling For Less Sets value. Calling For More Sets If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator ramps off and stops. If the load level rises above this set point during the Start Del	Allow Set to Start with	\Box = A stationary set with a warning alarm active will not be considered
Id = A stationary set with a warning alarm active will be considered part of the load demand scheme and may be called on to start if the load requires it. Balance Engine Hours Used in a Multi Set system so that the engine's priority changes according to the amount of usage of the set. For instance, in a two-set system. Set 1 has logged 100 running hours Set 2 has logged 20 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they with the minimum hours is started. Load Demand The average bus percentage level at which the module decides that generator is disconnected from the generator twill soleow the Calling For Less Sets value. Instead, the generator does not disconnect from the bus when its percentage of Will soleow the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators? Wy percentage is at the Calling For Less Sets value when its percentage fix Wy percentage is at the Calling For Less Sets value when its percentage of Will soleow the Calling For Less is a sole provent where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops. <td< td=""><td>Warning</td><td>part of the load demand scheme and so will not be called on to start.</td></td<>	Warning	part of the load demand scheme and so will not be called on to start.
the load demand scheme and may be called on to start if the load requires it. Balance Engine Hours Used in a Multi Set system so that the engine's priority changes according to the amount of usage of the set. For instance, in a two-set system. Set 1 has logged 100 running hours Set 2 has logged 20 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the <i>Start all sets initially</i> option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of tW is below the <i>Calling For Less Sets</i> value. Instead, the generator disconnects from the bus when it ensures that the remaining generators' kW percentage is at the <i>Calling For Less Sets</i> value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority begins its <i>Stop Delay</i> timer. Once this has expired, the generator crinues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load	5	$\mathbf{\Sigma}$ = A stationary set with a warning alarm active will be considered part of
requires it. Balance Engine Hours Used in a Multi Set system so that the engine's priority changes according to the amount of usage of the set. For instance, in a two-set system. Set 1 has logged 100 running hours Set 1 has logged 100 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator is disconnect from the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Gensel Priority) begins its Stop Delay timer. The kW load level it which the module calls for additional generators to join the generator bus. Calling For More Sets The key lead level reduces below this set point during the Start Delay timer. The kW load level at which the module calls for additional generators to join the generator bus. Once the lo		the load demand scheme and may be called on to start if the load
Balance Engine Hours Used in a Multi Set system so that the engine's priority changes according to the amount of usage of the set. For instance, in a two-set system. Set 1 has logged 100 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the <i>Start all sets initially</i> option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnect from the generator isconnects from the generator isconnects from the Calling For Less Sets value. Instead, the generator disconnects from the Calling For Less Sets value when it disconnects. This prevents the System for mechning a point where the load is such that the generator sisconnects from the bus when it ensures that the remaining generator is disconnect from the generator ramps off and stops. If the load level rises above this set point during the <i>Stop Delay</i> timer. Once this has expired, the generator frame off and stops. If the load level rises above this set point during the <i>Start Delay</i> timer, the timer is cancelled, and the generator is net bigoins its <i>Start Delay</i> timer. Once this has expired, the generator ramps off and stops. If the load level reduces below this level, the highest priority generator the load. This caters for short term reductions in kW load demand. Calling For More Sets		requires it
Balance Lighte Hours Osed in a Multi Sersystem Subardie Usage of the set. For instance, in a two-set system. Set 1 has logged 100 running hours Set 2 has logged 20 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator dues not disconnect from the bus when its percentage of KW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when its percentage of KW is below the Calling For Less Sets value. Instead, the generator disconnects the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Gensel Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The key load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the	Rolonco Engino Hours	Lead in a Multi Sat system so that the orgino's priority changes
according to the another of dage of the set. For instance, in a two-set system. Set 1 has logged 100 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators! kW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops. If the load level rises above this set point during the Stop Delay timer. Once this has expired, the generator raditional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps	Dalarice Engine Hours	osed in a <i>multi</i> Set system so that the engine's phonty changes
For instance, in a two-set system. Set 1 has logged 100 running hours Set 2 has logged 20 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator disconnects. This prevents the bus when it spercentage of kW is below the Calling For Less Sets value when it disconnects. This prevents the calling For Less Sets value when it disconnects. This prevents the bus when it server the call is set to a starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. The timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in KW load demand. Calling For More Sets The KW load level at which the module calls for additional generators to join the generator bus. Once the load is above this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term reductions in KW load demand. Calling For More Sets The kW load level at		according to the amount of usage of the set.
For instance, in a two-set system. Set 1 has logged 100 running hours Set 2 has logged 20 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets Galling For Less Sets Once the load is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators: KW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, t		For instance, in a two actionstance
Set 1 has logged 100 running hours Set 2 has logged 20 running hours Balance engine hours are configured to 75 hours.As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set.If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started.Load Demand Scheme DelayThe time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option.Calling For Less SetsThe average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generage bus percentage level at which the generator does not disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator S kW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly.Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsOnce the load is above this set point during the Start Pelay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term reductions in kW load demand.If the load level reduces below this set point during the Start Delay timer, time time is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the load level reduces below this set point during the Start Delay timer, the tim		For instance, in a two-set system.
Set 1 has logged 100 running hours Set 2 has logged 20 nunning hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of KW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators 'kW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to suppy power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The key lead which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) be		
Set 2 has logged 20 running hours Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the <i>Start all sets initially</i> option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnect from the bus when it specentage of kW is below the <i>Calling For Less Sets</i> value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Stop Delay</i> timer. Once this has expired, the generator continues to supply power to the load level rises above this set point during the <i>Stop Delay</i> timer. Once this has expired, the generator ramps off and stops. If the load level rises above this set point during the <i>Stop Delay</i> timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Start Delay</i> timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. <td< td=""><td></td><td>Set 1 has logged 100 running hours</td></td<>		Set 1 has logged 100 running hours
Balance engine hours are configured to 75 hours. As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand Scheme Delay Calling For Less Sets The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets Green to the Start all sets initially option. Calling For Less Sets The time for Less Sets value. Instead, the generator bus. The generator does not disconnect from the bus when it servers that the remaining generators' kW percentage is at the Calling For Less Sets value. Instead, the generator stopmet the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops. If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator ontinues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the se		Set 2 has logged 20 running hours
As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set. If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnect from the bus when it specentage of kW is below the Calling For Less Sets value. Instead, the generator does not disconnect from the bus when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops. If the load level rises above this set point during the Stop Delay timer. Once the load is above this set point during the Stop Delay timer, the timer is cancelled, and the generator on additional generators to join the generator bus. Calling For More Sets Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator points the bus and ramps up. If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. If the load level reduces below this set point		Balance engine hours are configured to 75 hours.
As Set 2 has logged 80 hours less than Set 1. As this is greater than the configured 75 hours, Set 2 is the highest priority set.If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started.Load Demand Scheme DelayThe time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option.Calling For Less SetsThe average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of KW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it and it optimer, the generator is such that the generator starts and stops repeatedly.Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This catters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator priority generator to be load. This catters for short term reductions in kW load demand.Calling For More SetsIf the load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this h		
configured 75 hours, Set 2 is the highest priority set.If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started.Load Demand Scheme DelayThe time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option.Calling For Less SetsThe average bus percentage level at which the module decides that generator is disconnect form the generator bus. The generator does not disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators: Wy percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly.Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Calling For More SetsIf the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term keduced the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled		As Set 2 has logged 80 hours less than Set 1. As this is greater than the
If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of KW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once the load is above this set point during the Start Delay timer, the timer is cancelled, and the generator continues to supply power to the load. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expir		configured 75 hours, Set 2 is the highest priority set.
If all sets are within the configured Balance Engine Hours value, the set with the minimum hours is started.Load DemandThe time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option.Calling For Less SetsThe average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of kW is below the <i>Calling For Less Sets</i> value. Instead, the generator disconnects from the bus when it ensures that the remaining generators' kW percentage is at the <i>Calling For Less Sets</i> value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly.Once the load is below this level, the lowest priority generator in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Stop Delay</i> timer. Once this has expired, the generator ramps off and stops.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the light friority generator that is not running in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Start Delay</i> timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the <i>Start Delay</i> timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the load level reduces below this set point during the <i>Start Delay</i> timer, the timer is cancelled, and the generator		
with the minimum hours is started. Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of KW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it generator disconnects from the bus when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority begins its Start De		If all sets are within the configured Balance Engine Hours value, the set
Load Demand The time for sets joining the bus (when the scheme is started) before they will leave for the Start all sets initially option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators' kW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once the load is above this set point during the Start Delay timer, the time is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. Calling For More Sets If the load level reduces below this set point during the Start Delay timer, the time is cancelled, and the generator enters its stops cycle. This caters for short te		with the minimum hours is started
Calling For Less Sets The wine for sets forming the base simitally option. Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator sit we prevent the system from treaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets If the load level at which the module calls for additional generators to join the generator bus. Calling For More Sets Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up. If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. If the load level reduces below this set point during th	Load Demand	The time for sets joining the bus (when the scheme is started) before they
Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnect from the generator bus. The generator does not disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator does not disconnects from the bus when it disconnects. This preventage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer, the timer is cancelled, and the generator continues to supply power to the load. The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up. If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. If the load level reduces below this set point during the Start Delay timer, the timer	Schomo Dolov	will loove for the Stort all sets initially ention
Calling For Less Sets The average bus percentage level at which the module decides that generator is disconnected from the generator bus. The generator does not disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators' kW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the sequence (determined using the Genset Priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up. If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. Calling For More Sets The kW load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. If the load level reduces below th	Colling For Loss Coto	The every set by a percentage level of which the module decides that
Generator is disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators' kW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops. If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up. If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place. Start Delay Time delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.	Calling For Less Sets	The average bus percentage lever at which the module decides that
not disconnect from the bus when its percentage of kW is below the Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators' kW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops. If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up. If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.		generator is disconnected from the generator bus. The generator does
Calling For Less Sets value. Instead, the generator disconnects from the bus when it ensures that the remaining generators' kW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly. Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops. If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand. Calling For More Sets The kW load level at which the module calls for additional generators to join the generator bus. Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up. If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand. If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place. Start Delay Time delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		not disconnect from the bus when its percentage of kW is below the
bus when it ensures that the remaining generators' kW percentage is at the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly.Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority begins its Start Delay timer. Once this has expired, the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is no		Calling For Less Sets value. Instead, the generator disconnects from the
the Calling For Less Sets value when it disconnects. This prevents the system from reaching a point where the load is such that the generator starts and stops repeatedly.Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops.If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		bus when it ensures that the remaining generators' kW percentage is at
system from reaching a point where the load is such that the generator starts and stops repeatedly.Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops.If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at storp to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		the Calling For Less Sets value when it disconnects. This prevents the
starts and stops repeatedly.Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops.If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		system from reaching a point where the load is such that the generator
Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops.If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		starts and stops repeatedly.
Once the load is below this level, the lowest priority generator in the sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops.If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		
sequence (determined using the Genset Priority) begins its Stop Delay timer. Once this has expired, the generator ramps off and stops.If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		Once the load is below this level, the lowest priority generator in the
Subjective (determined using the context ramps off and stop).timer. Once this has expired, the generator ramps off and stops.If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		sequence (determined using the Genset Priority) begins its Stop Delay
Inner: Once this has expired, the generator ramps on and stops.If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		timer. Once this has expired, the generator ramps off and stops
If the load level rises above this set point during the Stop Delay timer, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		
In the load level rises above this set point during the <i>Stop Delay</i> time, the timer is cancelled, and the generator continues to supply power to the load. This caters for short term reductions in kW load demand.Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Start Delay</i> timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the <i>Start Delay</i> timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		If the lead level rises above this set point during the Step Delay timer, the
Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Start Delay</i> timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the <i>Start Delay</i> timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		i une load level fises above uns set point during the <i>Stop Delay</i> timer, the
Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Start Delay</i> timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the <i>Start Delay</i> timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		timer is cancelled, and the generator continues to supply power to the
Calling For More SetsThe kW load level at which the module calls for additional generators to join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Start Delay</i> timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the <i>Start Delay</i> timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayStop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		load. This caters for short term reductions in KW load demand.
join the generator bus.Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop Delay	Calling For More Sets	The kW load level at which the module calls for additional generators to
Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Start Delay</i> timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the <i>Start Delay</i> timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayStart DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		join the generator bus.
Once the load is above this level, the highest priority generator that is not running in the sequence (determined using the <i>Genset Priority</i>) begins its <i>Start Delay</i> timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the <i>Start Delay</i> timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayStop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		
running in the sequence (determined using the Genset Priority) begins its Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayStop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		Once the load is above this level, the highest priority generator that is not
Start Delay timer. Once this has expired, the generator joins the bus and ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		running in the sequence (determined using the <i>Genset Priority</i>) begins its
ramps up.If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		Start Delay timer. Once this has expired, the generator joins the bus and
If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		ramps up.
If the load level reduces below this set point during the Start Delay timer, the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		
In the timer is cancelled, and the generator enters its stops cycle. This caters for short term kW load demand.If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		If the load level reduces below this set point during the Start Delay timer.
If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place. Start Delay Time delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme. Stop Delay Time delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		the timer is cancelled and the generator enters its stops cycle. This
Start Delay Time delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme. Stop Delay Time delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		caters for short term kW load demand
If the set fails to become available, it communicates this using the AMSC Link which signals the next generator in the sequence to take its place.Start DelayTime delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		
Start Delay Time delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme. Stop Delay Time delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		If the pat fails to become available, it communicates this using the AMOO
Start Delay Time delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme. Stop Delay Time delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		Link which signals the payt generator in the seguence to take its right
Start Delay Time delay used at start up to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme. Stop Delay Time delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.	Otart Dala	Link which signals the next generator in the sequence to take its place.
Stop Delay Time delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.	Start Delay	I me delay used at start up to ensure the start request is not simply a
Stop DelayTime delay used at stopping to ensure the start request is not simply a fleeting request. This timer is only active in the Load Demand Scheme.		Teeting request. This timer is only active in the Load Demand Scheme.
fleeting request. This timer is only active in the Load Demand Scheme.	Stop Delay	Time delay used at stopping to ensure the start request is not simply a
		fleeting request. This timer is only active in the Load Demand Scheme.

NOTE: Calling For More /Less sets is calculated based on the next Set to start or stop on the bus not the current set reaching a value and calling for the next one to start or stop.

Spinning Capacity

Spinning Capacity	
Enable Spinning Capacity	₽ 0
Not Reached Alarm	
Action	~
Delay	0s

Parameter	Description
Enable	\Box = Spinning capacity is disabled.
	$\mathbf{\Sigma}$ = Spinning capacity is enabled.
Spinning Capacity	The minimum power that will be available on the bus. The Load
	Demand Scheme will always run enough sets to exceed this value
	regardless of load and calling for less sets setting.
Not Reached Alarm	An alarm is generated when the spinning capacity cannot be
	achieved.
Action	Select the action for the Not Reached Alarm:
	Indication:
	Warning:
Delay	Set the amount of time before the Spinning Capacity Alarm
	activates.

Spinning Reserve

Spinning Reserve	
Enable Spinning Reserve	
Not Reached Alarm	• • • •
Action	•
Delay	0s

Parameter	Description
Enable	\Box = Spinning reserve is disabled.
	☑= Spinning reserve is enabled.
Spinning Reserve	The power available over and above the load requirements on the
	bus. The load demand scheme will start further sets to ensure that
	sufficient power is available above the load requirements of the bus
	and will ensure this margin is maintained.
Not Reached Alarms	Activates when the spinning reserve cannot be achieved.
Action	Select the action for the Not Reached Alarm:
	Indication:
	Warning:
Delay	Set the amount of time before the Spinning Reserve Alarm activates.

3.7.9.4.4 CREATING / EDITING THE DROOP CURVES

While the *DSE Configuration Suite* holds the most used droop curves, occasionally it is required that the module's droop function be configured for a specification application not listed by the *DSE Configuration Suite*. To aid this process, a droop curve editor is provided.

Change Axis Range

NOTE: The difference between the Minimum and Maximum values on the X and Y axis must exceed the noted limits.

3.7.9.5 SET DRIVE PROTECTION

Insufficient Capacity

Insufficient	t Capacity	
Action	None	•
Delay	1s	0

Parameter	Description
Action	Activates when the governor output percentage reaches the maximum value for the configured <i>Delay</i> time. This indicates that the generator is not able to produce the kW requested due to having incorrect settings for SW1 and SW2 or a fault with the engine. The alarm action list is as follows, see section 5 entitled <i>Alarm Types</i> for more information: <i>Electrical Trip:</i> <i>Indication:</i> <i>None:</i> <i>Shutdown:</i> <i>Warning:</i>
Delay	Set the amount of time before the <i>Alarm</i> activates.

AVR Loss of Excitation

AVR Loss C	of Excitation	
Arming Pre-Alarm	Active from Mains Parallel 🔻	
Trip	25.0 %	%
Return	¢ 20.0 %	%
Alarm		
Action	Shutdown 👻	
Trip	35.0 %	%
Delay	1s	2

Parameter	Description
Arming	Arming for more information.
	Select when the <i>Loss Of Excitation</i> alarm becomes active: Active from Mains Parallel Always
Loss Of Excitation Pre-Alarm IEEE C37.2 – 32 Directional Power Relay	□ = Loss of Excitation does NOT give a pre-alarm warning ☑ = The Loss of Excitation Pre-Alarm is active when the measured negative kvar exceeds the Loss of Excitation Pre-Alarm Trip setting. The Loss of Excitation Pre-Alarm is automatically reset when the measured negative kvar no longer exceeds the configured Loss of Excitation Pre- Alarm Return level. The Loss Of Excitation Trip level is adjusted to suit user requirements.
Loss Of Excitation Alarm IEEE C37.2 – 32 Directional Power Relay	\square = Loss of excitation does NOT give a Shutdown alarm \square = The Loss of Excitation Alarm is active when the measured negative kvar exceeds the Loss of Excitation Alarm setting for the configured Delay. The Loss Of Excitation Trip level and action is adjusted to suit user requirements.
Action	A NOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
Delay	Select the type of alarm required from the list: <i>Electrical Trip:</i> The breaker is opened immediately, and the cooling timer begins, after which the set is stopped. <i>Shutdown:</i> The breaker is opened immediately, and the set is immediately stopped.

Editing the Configuration

AVR Trim Alarm

AVR Trim Alarm			
Action	Indication	•	
Delay	1s		

Parameter	Description
AVR Trim Alarm	Activates when the AVR output percentage reaches the maximum value for the configured <i>Delay</i> time. This indicates that the generator is not able to produce the kvar requested due to having incorrect settings for SW1 and SW2, or a fault with the alternator. The alarm action list is as follows, see section 5 entitled <i>Alarm Types</i> for more information: <i>Electrical Trip:</i> <i>Indication:</i> <i>None:</i> <i>Shutdown:</i> <i>Warning:</i>
Delay	Set the amount of time before the Alarm activates.

3.7.9.6 POWER CONTROL

ANOTE: The *Power Control* modes and *Voltage and Reactive Power Control* modes are to be used in conjunction with the following documents:

- Engineering Recommendation G99 Issue 1 – Amendment 8 1 September 2021 - COMMISSION REGULATION (EU) 2016/631 of 14 April 2016 establishing a network code on

requirements for grid connection of generators - P1547 - IEEE Draft Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces

ANOTE: The Simulation Injection Testing tool of the DSE Configuration Suite PC Software allows testing the generator's frequency response and check its performance for the Power Control curves. For details on how to test the Simulation Injection on the DSE module refer to DSE Publication: 056-123 Simulation Injection Testing document.

ANOTE: The *Power Control* parameters (Multi Set Mode Selected) only have effect when a digital input is configured for *Mains Parallel Mode* instructing the module to operate in fixed export mode with the utility supply. In Single Set Mode this operation is done automatically. For more information on this application, refer to DSE Publication: 056-054 DSE8x10 in Fixed Export (Base Load) which is found on our website: www.deepseaelectronics.com

NOTE: Activation of the different Power Control modes is done through digital inputs, PLC functions, Front Panel Editor or Modbus; with digital inputs having higher priority over PLC functions, and PLC functions have higher priority over Front Panel Editor and Modbus commands.

NOTE: Simultaneously activating different *Power Control* modes, results in the lowest number taking priority.

Constant Power Mode (Default)

Constant Power Mode (Default)

No additional settings are required

This is the default mode of exporting power to the Mains (utility); where the DSE load share controller holds the amount of power produced at a constant level. The amount of power produced by the generator is irrespective of the load level or any other parameter.

The amount of power produced is defined as Maximum kW Level and is set in SCADA | Generator | Load Levels section, through the Front Panel Running Editor, in PLC Functions, or via Modbus messages.

Frequency-Power Mode

Frequency-Power Mode	
Frequency Rolling Average 1.0s	
Control Curve RfG GB LFSM_O	▼ Edit

In this mode of exporting power to the Mains (utility); the DSE load share controller varies the amount of power produced with regards to the Control Curve depending on the measured frequency. This mode allows the generator to support the Mains (utility) frequency stability by monitoring the frequency and changing the amount of power produced.

Parameter	Description
Frequency Rolling Average	The measured frequency is averaged over the period of the <i>Frequency</i> <i>Rolling Average</i> . The average frequency is used in the <i>Control Curve</i> to
	determine the required level of power production.
Control Curve	The Control Curve determines, based on the average frequency, the amount of power the generator produces. This amount of power is a percentage of the <i>kW Maximum Load Level</i> set within the SCADA section.
	Select the <i>Control Curve</i> from a pre-defined list or create a user-defined curve.
	<i>RfG GB LFSM_O:</i> Requirements for Generators Network Code in Great Britain, Limited Frequency Sensitive Mode Over frequency.
	RfG GB LFSM_U: Requirements for Generators Network Code in Great
	<i>R</i>fG GB LFSM_U and LFSM_O: Requirements for Generators Network
	and Over frequency.
	RfG GB FSM 5%: Requirements for Generators Network Code in Great Britain, Frequency Sensitive Mode at 5%
	P1547 FORDER 50%: Requirements for Generators in United States, Frequency
	P1547 60Hz 75% . Requirements for Generators in United States, Frequency
	Sensitive Mode at 75%.
	P1547 60Hz 90%: Requirements for Generators in United States, Frequency Sensitive Mode at 90%
	 curve. <i>RfG GB LFSM_O:</i> Requirements for Generators Network Code in Great Britain, Limited Frequency Sensitive Mode Over frequency. <i>RfG GB LFSM_U:</i> Requirements for Generators Network Code in Great Britain, Limited Frequency Sensitive Mode Under frequency. <i>RfG GB LFSM_U and LFSM_O:</i> Requirements for Generators Network Code in Great Britain, Limited Frequency Sensitive Mode Under frequency and Over frequency. <i>RfG GB FSM 5%:</i> Requirements for Generators Network Code in Great Britain, Frequency Sensitive Mode at 5%. <i>P1547 60Hz 50%:</i> Requirements for Generators in United States, Frequency Sensitive Mode at 50%. <i>P1547 60Hz 75%:</i> Requirements for Generators in United States, Frequency Sensitive Mode at 75%. <i>P1547 60Hz 90%:</i> Requirements for Generators in United States, Frequency Sensitive Mode at 90%.
Voltage-Power Mode

Voltage-Power Mode	
Voltage Rolling Average 1.0s	
Control Curve Power Against Voltage	▼ Edit

In this mode of exporting power to the Mains (utility); the DSE load share controller varies the amount of power produced with regards to the Control Curve depending on the measured voltage. This mode allows the generator to support the Mains (utility) voltage stability by monitoring the voltage and changing the amount of power produced.

Parameter	Description
Voltage Rolling Average	The measured voltage is averaged over the period of the <i>Voltage Rolling Average</i> . The average voltage is used in the <i>Control Curve</i> to determine the required level of power production.
Control Curve	The <i>Control Curve</i> determines, based on the average voltage, the amount of power the generator produces. This amount of power is a percentage of the <i>kW Maximum Load Level</i> .
	Select the <i>Control Curve</i> from a pre-defined list or create a user-defined curve.

Power Ramp on Setpoint Change

Power Ramp on Setpoint C	hange			
Ramp Rate	÷ 50.0	%	-0	%/s

Parameter	Description
Ramp Rate	When changing between <i>Power Control</i> modes or changing the set point, the <i>Ramp Rate</i> defines how fast the output power changes in percentage points per second.

3.7.9.6.1 CREATING / EDITING THE POWER MODE CURVE

While the *DSE Configuration Suite* holds the most used droop curves, occasionally it is required that the module's droop function be configured for a specification application not listed by the *DSE Configuration Suite*. To aid this process, a droop curve editor is provided.

3.7.9.7 VOLTAGE AND REACTIVE POWER CONTROL

ANOTE: The *Power Control* modes and *Voltage and Reactive Power Control* modes are to be used in conjunction with the following documents:

- Engineering Recommendation G99 Issue 1 – Amendment 8 1 September 2021

- COMMISSION REGULATION (EU) 2016/631 of 14 April 2016 establishing a network code on requirements for grid connection of generators

- P1547 - IEEE Draft Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces

ANOTE: The Simulation Injection Testing tool of the DSE Configuration Suite PC Software allows testing the generator's voltage response and check its performance for the Voltage & Reactive Power Control curves. For details on how to test the Simulation Injection on the DSE module refer to DSE Publication: 056-123 Simulation Injection Testing document.

ONOTE: The Voltage and Reactive Power Control parameters only have effect when a digital input is configured for *Multi Set Mode* instructing the module to operate in fixed export mode with the utility supply. In Single Set Mode this operation is done automatically. For more information on this application, refer to DSE Publication: 056-054 DSE8x10 in Fixed Export (Base Load) which is found on our website: www.deepseaelectronics.com

ANOTE: Activation of the different *Voltage and Reactive Power Control* modes is done through digital inputs, PLC functions, Front Panel Editor or Modbus; with digital inputs having higher priority over PLC functions, and PLC functions have higher priority over Front Panel Editor and Modbus commands.

ANOTE: Simultaneously activating different *Voltage and Reactive Power Control* modes, results in the lowest number taking priority.

Constant Power Factor Mode

Constant Power Factor Mode		
Limit Power Factor to Generator Rating Power Rolling Average	⊘ 1.0s	_]

In this mode of exporting power to the Mains (utility); the DSE load share controller varies the amount of reactive power produced with regards to maintaining the required power factor.

This mode allows the generator to maintain a constant export power factor if so required. The required power factor is set in *SCADA | Generator | Load Levels* section, through the Front Panel Running Editor, PLC Functions, or Modbus messages.

Parameter	Description
Limit Power Factor	= The generator produces power beyond its specified power factor rating
to Generator	configured within the Generator Rating section. This may lead to the
Rating	generator producing excessive positive or negative kvar.
	\blacksquare = The generator produces power within its specified power factor rating
	configured within the Generator Rating section.
Power Rolling	The exported power is averaged over the period of the Power Rolling
Average	Average. The average power is then used to determine the required reactive
	power production to achieve the set power factor.

Voltage-Reactive Power Mode

Voltage-Reactive Power Mode	
Limit Power Factor to Generator Rating	7
Power Rolling Average 1.0	1.0s —
Voltage Rolling Average 1.0	1.0s
Control Curve Reactive Power Against Voltage	e 👻 Edit

In this mode of exporting power to the Mains (utility); the DSE load share controller varies the amount of reactive power produced with regards to the Control Curve depending on the measured voltage. This mode allows the generator(s) to support the Mains (utility) voltage stability by monitoring the voltage and changing the amount of reactive power produced.

Parameter	Description
Limit Power Factor	\Box = The generator produces power beyond its specified power factor rating
to Generator	configured within the Generator Rating section. This may lead to the
Rating	generator producing excessive positive or negative kvar.
	\blacksquare = The generator produces power within its specified power factor rating
	configured within the Generator Rating section.
Power Rolling	The exported power is averaged over the period of the <i>Power Rolling</i>
Average	Average. The average power is used to calculate the power factor if the
	option Limit Power Factor To Generator Rating is enabled.
Voltage Rolling	The measured voltage is averaged over the period of the Voltage Rolling
Average	Average. The average voltage is used in the Control Curve to determine the
	required level of reactive power production.
Control Curve	The Control Curve determines, based on the average voltage, the amount of
	reactive power the generator produces. This amount of power is a
	percentage of the kvar Maximum Load Level.
	Select the <i>Control Curve</i> from a pre-defined list or create a user-defined
	curve.

Power-Power Factor Mode

Power-Power Factor Mode		,
Power Rolling Average	1.0s	
Control Curve Power Factor Against Power	▼ Edit	

In this mode of exporting power to the Mains (utility); the DSE load share controller varies the amount of reactive power produced with regards to maintaining the required power factor. This power factor is derived from the averaged power using the *Control Curve*.

This mode allows the generator to support the Mains (utility) stability by varying the power factor depending on the export power.

Parameter	Description
Power Rolling	The exported power is averaged over the period of the Power Rolling
Average	Average.
	The average is then used in the Control Curve to determine the required
	power factor.
Control Curve	The <i>Control Curve</i> determines, based on the average power, the power factor that is required.
	Select the <i>Control Curve</i> from a pre-defined list or create a user-defined curve.

Constant Reactive Power Mode (Default)

Constant Reactive Power Mode (Default)
Limit Power Factor to Generator Rating 🗵

This is the default mode of exporting power to the Mains (utility); where the DSE load share controller holds the amount of reactive power produced at a constant level. The amount of reactive power produced by the generator is irrespective of the load level or any other parameter. The amount of reactive power produced is defined as *Maximum kvar Level* and is set in SCADA/Generator/Load Levels section, through the Front Panel Running Editor, in PLC Functions, or via Modbus messages.

Parameter	Description
Limit Power Factor	= The generator produces kvars beyond its specified power factor rating
to Generator	configured within the Generator Rating section. This may lead to the
Rating	generator producing excessive positive or negative kvar.
	$\mathbf{\overline{M}}$ = The generator produces kvars within its specified power factor rating
	configured within the Generator Rating section.

Reactive Power Ramp on Setpoint Change

Reactive Power Ramp on Setpoint Change				
Ramp Rate	- 50.0	%		%/s

Parameter	Description
Ramp Rate	When changing between Voltage and Reactive Power Control modes or
	changing the set point, the Ramp Rate defines how fast the output reactive
	power changes in percentage points per second.

3.7.10 FAULT RIDE THROUGH

NOTE: To configure these settings refer to the appropriate grid standards for paralleling with the mains.

ANOTE: The *Fault Ride Through* feature is used to prevent the generator being disconnected from the Mains when in parallel during a momentary Mains Failure. Care MUST be taken when configuring the *Fault Ride Through* feature as a prolonged time in parallel with a failed mains might cause a damage to the generator.

The *Fault Ride Through* feature is useful to prevent Electrical Trips on voltage dips caused by the grid when the generator is running in *Multi Set* mode. This feature is also applicable on generators paralleling. The feature is to ignore the following *Electrical Trip* and *Shutdown* alarms:

- Reverse Power
- Short Circuit
- Unbalanced Load
- Overcurrent
- Under Voltage
- Over Voltage
- Under Frequency
- Over Frequency
- Under Speed
- Over Speed
- Mains Decoupling Voltage & Frequency Stage Alarms
- Over Load
- Low Load
- Phase Rotation
- Earth Fault

The *Fault Ride Through* curve must be configured which is formed of a sequence of *Connection Point Voltages* which increase after consecutive time intervals. The *Fault Ride Through* curve allows the generator to ignore the above list of alarms if the voltage remains above the specified curve during the transmission grid fault and recovery.

The curve starts when the voltage on one or more of the generator phases falls below the Urec3 level. The curve ends on the expiry of Trec4, after which all alarms will trip as usual.

The Connection Point Voltages are configured in PU (*Per Unit*) which represent the percentages of the Generator Nominal Voltage; (i.e., 0.30PU = 30%). All the timers are configured in hundredths of a second.

Editing the Configuration

Parameter	Description
Enable Fault Ride	\Box = Fault Ride Through is disabled when in Mains Parallel Mode.
Through	\mathbf{V} = Fault Ride Through is enabled when in Mains Parallel Mode.
Enable In Island	\Box = Fault Ride Through is disabled when load sharing with generators only.
Mode	\blacksquare = Fault Ride Through is enabled when load sharing with generators only.
Uret	When the Fault Ride Through event starts, the voltage must remain above
	this level to ignore the Gen Low Voltage Electrical Trip or Shutdown alarm.
	This is the voltage that must be retained. If it falls below this then the list of
	alarms is enabled.
Tclear	During the normal operation when the voltage drops below the Urec3 level
	this timer is started and the Fault Ride Through event is activated.
	After this time, the DSE module monitors the voltage to ensure it remains
	above the FRT curve to ignore the alarms.
	This timer ends at the next Connection Point Voltage (Uclear) of the curve.
	This is set longer than the clearance time of the transmission grid's circuit
	breakers.
Uclear	The next Connection Point Voltage level at the Tclear time, above which the
	voltage must be to ignore the Gen Low Voltage Alarm. The voltage must
	recover above this level after the transmission grid's circuit breaker clears, if
	not then the list of alarms is enabled.
l rec1	The time in seconds that the FRT event is active for.
	The voltage must be raised above the Urec1 level at this time.
Urec1	The next Connection Point Voltage level after the Trec1 time, above which
—	the dipped voltage must be to ignore the Gen Low Voltage Alarm.
Trec2	The time in seconds that the FRT event is active for.
	After this time, the voltage must be raised above the <i>Urec1</i> level to ignore
	the Gen Low Voltage Alarm.

Parameter	Description
Urec2	The next Connection Point Voltage level after the Trec3 time, above which
	the voltage must be to ignore the Gen Low Voltage Alarm.
Trec3	The time in seconds that the FRT event is active.
	At this time, the voltage must be raised above the Urec2 level, but if the
	voltage is still below the Urec2, then the Fault Ride Through event
	terminates and the alarms are no longer ignored.
Urec3	The next Connection Point Voltage level after the Trec4 time, above which
	the voltage must be to terminate the Fault Ride Through event and activate
	the alarms.
Trec4	The time in seconds after which the DSE module monitors the voltage level
	to be raised above the Urec3 to clear the Fault Ride Through event.
	The voltage must rise above Urec3 for a new event to be started. The alarms
	are enabled at that time. If the voltage fails to stay over this part of the curve,
	then the list of alarms is enabled.

Save / Load Curve

This feature is used to import the Fault Ride Through settings into another DSE module.

Parameter	Description
Save Curve	This allows saving the current configured settings of the <i>Fault Ride Through</i> into an FRT file.
Load Curve	This allows loading of previously configured settings of the Fault Ride Through saved in FRT format.

3.8 BUS (MULTI SET) The Bus section is subdivided into smaller sections.

Bus **Bus Options** Bus Sequence Alarms

3.8.1 BUS OPTIONS

Bus Settings

Parameter	Description
Bus Settings	All the Bus Settings are locked to the same configuration as the Generator
_	Settings. This section is displayed for clarification purposes only.

Bus Phase Rotation

Bus Phase Rotatio	in
Enable	2
Phase Rotation	L1-L2-L3 V

Parameter	Description
Bus Phase	All the Bus Phase Rotation settings are locked to the same configuration as
Rotation	the Generator Phase Rotation settings. This section is displayed for
	clarification purposes only.

3.8.2 BUS SEQUENCE ALARMS

Zero sequence Alarm

Zero Seque	nce Alarm							
Enable 🔳	Zero Seque	nce shou	ild be set to	o a third of	f the required	NVD value.		
Action	-							
Arming	-							
Trip	‡ 39.8 V	PhPh =]			10.0%	39.8V PhPh	
Delay	0.0s							

Parameter	Description
Enable	A NOTE: The Zero Sequence Alarm must be set to a third of the required Neutral Voltage Displacement (NVD) value. This is because the summation of the three Zero Sequence vector components is equal to the NVD value.
	 □ = Zero Sequence is disabled ☑ = Zero Sequence is enabled
Action	Activates when zero sequence is greater than the trip value. The alarm action list is as follows, see section 5 entitled <i>Alarm Types</i> for more information: <i>Auxiliary Mains Fail</i> <i>Electrical Trip</i> <i>Warning</i>
	A NOTE: If the Action is set as <i>Electrical Trip</i> and the bus is not live then the alarm will be generated, and the generator will not start.
Arming	Select when the alarm is active, see section 6 entitled <i>Alarm Arming</i> for more information: <i>Active from Mains Parallel</i> <i>Always</i> <i>From Safety On</i>
Trip	Set the voltage and percentage of zero sequence at which the Alarm is activated.
Delay	Set the amount of time before the zero-sequence alarm is activated.

Positive Sequence Alarm

Positive Sec	quence Alarm	
Enable 🔳		
Action	•	
Arming	•	
Trip	\$ 358.5 V PhPh 90.0%	6 358.5V PhPh
Delay	0.0s	

Parameter	Description
Enable	\Box = <i>Positive Sequence</i> is disabled
	$\mathbf{\nabla}$ = Positive Sequence is enabled
Action	Activates when positive sequence is greater than the trip value. The alarm
	action list is as follows, see section entitled Alarm Types for more
	information:
	Auxiliary Mains Fail
	Electrical Trip
	Warning
Arming	Select when the alarm is active, see section 6 entitled Alarm Arming for more
J. J	information:
	Active from Mains
	Always
	From Safety On
Trip	Set the voltage and percentage of positive sequence at which the Alarm is
	activated.
Delay	Set the amount of time before the positive sequence alarm is activated.
• •	

Negative Sequence alarm

Negative Se	equence Alar	m			
Enable 📃					
Action	-				
Arming	-				
Trip	2 39.8 V	PhPh =		10.0%	39.8V PhPh
Delay	0.0s			3	

Parameter	Description
Enable	\Box = Negative Sequence is disabled
	$\mathbf{\nabla}$ = Negative Sequence is enabled
Action	Select which action is activated.
	The alarm action list is as follows, see section entitled <i>Alarm Types</i> for more
	information:
	Auxiliary Mains Fail
	Electrical Trip
	Warning
Arming	Select when the alarm is active, see section 6 entitled Alarm Arming for more
	information:
	Active from Mains Parallel
	Always
	From Safety On
Trip	Set the voltage and percentage of negative sequence at which the Alarm is
	activated.
Delay	Set the amount of time before the <i>negative sequence alarm is activated</i> .

ANOTE: The trip level is calculated as follows. Number of phases x trip level % x full load amps.

Asymmetry Alarm

Asymmetry	Alarm		
Enable 🔳			
Action	•		
Arming	•		
Trip	\$ 39.8 V PhPh	10.0%	39.8V PhPh
Delay	0.0s		

Parameter	Description
Enable	= Asymmetry Alarm is disabled
	$\mathbf{\nabla}$ = Asymmetry is Alarm is enabled
Action	Activates when asymmetry is greater than the trip value. The alarm action list
	is as follows, see section entitled <i>Alarm Types</i> for more information:
	Fail
	Electrical Trip
	Warning
Arming	Select when the alarm is active, see section 6 entitled Alarm Arming for more
	information:
	Active from Mains Parallel
	Always
	From Safety On
Trip	Set the voltage and percentage of asymmetry at which the Alarm is
	activated.
Delay	Set the amount of time before the asymmetry alarm is activated.

3.9 MAINS (SINGLE SET ONLY)

Mains (Single Set)

Mains Options

Mains Voltage Alarms

Mains Sequence Alarms

Mains Frequency Alarms

Mains Current

3.9.1 MAINS OPTIONS

Mains Options

Parameter	Description
Mains Failure	\Box = Mains Failure Detection is disabled.
Detection	☑ = Mains Failure Detection is enabled.
Immediate Mains	\Box = Upon mains failure, the mains load switch is kept closed until the
Dropout	generator is up to speed and volts.
	$\mathbf{\Sigma}$ = Upon mains failure, the mains load switch is opened immediately,
	subject to the setting of the <i>mains transient</i> timer.
AC System	The AC System of the mains is fixed to the same setting as the generator.
	These settings are used to detail the type of AC system to which the module
	is connected:
	2 Phase, 3 Wire L1 - L2
	2 Phase, 3 Wire L1 - L3
	3 Phase, 3 Wire NVD
	3 Phase, 3 Wire
	3 Phase, 4 Wire
	3 Phase, 4 Wire Delta L1 - N - L2
	3 Phase, 4 Wire Delta L1 - N - L3
	3 Phase, 4 Wire Delta L2 - N - L3
	Single Phase, 2 Wire
	Single Phase, 3 Wire L1 - L2
	Single Phase, 3 Wire L1 - L3

Parameters detailed overleaf...

Parameter	Description
VTs	\Box = The voltage sensing to the controller is direct from the Mains
	\blacksquare = The voltage sensing to the controller is via Voltage Transformers (VTs or
	PTs)
	This is used to stan down the mains voltage to be within the controller voltage
	specifications
	By entering the <i>Primary</i> and Secondary voltages of the transformer, the
	controller displays the <i>Primary</i> voltage rather than the actual measured voltage.
	This is typically used to interface the DSE module to high voltage systems (i.e.,
	11 kV).

Mains Phase Rotation

Enable	V					
Phase Rotation	L	1-L2-L3	-			

Parameter	Description
Mains Phase	= Mains phase rotation is not checked.
Rotation	\mathbf{Z} = A mains failure is detected when the measured phase rotation is not as
IEEE C37.2 – 47 Phase	configured.
Sequence Relay	

Breaker Control

Breaker Control		
Enable Breaker Alarms	1	
Fail to Open Delay	1.0s	
Fail to Close Delay	1.0s	

Parameter	Description
Enable Breaker	\Box = Alarm is disabled
Alarms	☑ = The Mains Breaker Alarms are enabled.
Fail To Close Delay	When the Close Mains output is activated, if the configured Mains Closed
	Auxiliary digital input does not become active within the Mains Fail To
	Close Delay timer, the alarm is activated.
Fail To Open Delay	When the Open Mains output is activated, if the configured Mains Closed
	Auxiliary digital input does not become inactive within the Mains Fail To
	Open Delay timer, the alarm is activated.

Editing the Configuration

Phase Offset

hase Offset			
Allow Editing Phase Offset	: •]		

Parameter	Description
Allow Editing	= Allow Editing is disabled.
	☑ = Allow Editing is enabled.
Phase Offset	Set the phase angle between the VT primary and secondary.

CAUTION! Editing the phase offset is only allowed when the checkbox is ticked. This setting is only required if a phase offset is available and should not be altered otherwise. If the setting is adjusted and no phase offset is required, then crash synchronisation may occur. This option is only available on the Single Set Controller.

3.9.2 MAINS VOLTAGE ALARMS

Under Voltage Alarms

Under Volt	Under Voltage Alarms						
Enable 🔽							
Trip	- 318	V PhPh		318V PhPh			
Return	- 358	V PhPh		358V PhPh			

Parameter	Description
Mains Under	I = Mains Under Volts does NOT give an alarm.
Voltage Alarm	\mathbf{M} = The module detects a Mains Failure when the mains supply voltage falls
Undervoltage Relay	Transient Delay. The Undervolts Alarm Trip value is adjustable to suit user
	requirements.

Nominal Voltage

Nominal Voltage				
2398 V PhPh	0	398V PhPh		

Parameter	Description
Nominal Voltage	This is used to calculate the percentage of mains failure thresholds by the
	voltage alarm limits.

Overvoltage Alarms

0	Over Voltage Alarms						
E	Enable 🗵						
	Return	- 438	V PhPh]	438V PhPh		
	Trip	- 478	V PhPh		478V PhPh		

Parameter	Description
Mains Over	I = Alarm is disabled.
Voltage	$\mathbf{\Sigma}$ = The module detects a Mains Failure when the mains supply voltage
IEEE C37.2 – 59 AC	rises above the configured Over Volts Alarm Trip value for longer than the
Overvoltage Relay	Mains Transient Delay. The Overvolts Alarm Trip value is adjustable to suit
	user requirements.

3.9.3 MAINS SEQUENCE ALARMS

Zero Sequence Alarm

Zero Sequence Alarm			
Enable 📃 🛛 Zero Sequ	ience should be set to a third of the required NVE) value	
Action			
Trip 🗘 39.8 V	/ PhPh - 1	10.0%	39.8V PhPh
Delay 0.0s	0		

Parameter	Description
Zero Sequence Alarm IEEE C37.2 – 47H Phase-Sequence Or Phase Balance Voltage Relay	NOTE: The Zero Sequence Alarm must be set to a third of the required Neutral Voltage Displacement (NVD) value. This is because the summation of the three Zero Sequence vector components is equal to the NVD value.
	This is also known as Neutral Voltage Displacement. \Box = Alarm is disabled. $\overline{\Box}$ = The alarm activates when the difference in potential between the Earth and the calculated Neutral position of a 3-wire delta exceeds the configured Zero Sequence Alarm Trip level for the configured Delay time.
Action	Select the type of alarm required from the list: Single Set Electrical Trip Warning For details of these, see the section 5 entitled Alarm Types in this document.

Positive Sequence Alarm

Í	Positive See	quence A	larm				
	Enable 🔳						
	Action			+			
	Trip	\$ 358.5	V PhPh]	90.0%	358.5V PhPh
	Delay	0.0s]		

Parameter	Description
Positive Sequence	= Alarm is disabled
Alarm	$\mathbf{\Sigma}$ = The alarm activates when the <i>Positive Sequence</i> voltage falls
IEEE C37.2 – 47L	below the configured Positive Sequence Alarm Trip level for the
Phase-Sequence Or	configured <i>Delay</i> time.
Phase Balance Voltage	
Relay	
Action	Select the type of alarm required from the list:
	Single Set
	Electrical Trip
	Warning
	For details of these, see the section 5 entitled <i>Alarm Types</i> in this
	document.

Negative Sequence Alarm

Negative Se	equence A	larm				
Enable 🔳						
Action			-			
Trip	\$ 39.8	V PhPh	-	J	10.0%	39.8V PhPh
Delay	0.0s					
			_			

Parameter	Description
Negative Sequence Alarm IEEE C37.2 – 47H Phase-Sequence Or Phase Balance Voltage Relay	\square = Alarm is disabled \blacksquare = The alarm activates when the <i>Negative Sequence</i> voltage exceeds the configured <i>Negative Sequence Alarm</i> level for the configured <i>Delay</i> time.
Action	Select the type of alarm required from the list: Single Set Electrical Trip Warning For details of these, see the section 5 entitled Alarm Types in this document.

Asymmetry Alarm

Asymmetry	Alarm					
Enable 🔳						
Action			-			
Trip	\$ 39.8	V PhPh	-]	10.0%	39.8V PhPh
Delay	0.0s					

Parameter	Description
Asymmetry Alarm	\Box = Alarm is disabled
IEEE C37.2 – 59	\blacksquare = The alarm activates when the voltage between any two phases
Overvoltage Relay	exceeds the configured Asymmetry Alarm Trip level for the configured
	Delay time.
	For example:
	L1=230, L2=235, L3=226
	Asymmetry is <i>largest value – smallest value = 235 – 226 = 9V</i>
Action	Select the type of alarm required from the list:
	Single Set
	Electrical Trip
	Warning
	For details of these, see the section 5 entitled Alarm Types in this
	document.

3.9.4 MAINS FREQUENCY ALARMS

Under Frequency Alarm

Enable 🔽	
Trip 450 Hz	
mp +50 m2	
Return 2 48.0 Hz	

Parameter	Description
Mains Under	I = Mains Under Frequency does NOT give an alarm.
Frequency Alarm	$\mathbf{\Sigma}$ = The module detects a Mains Failure when the mains supply
IEEE C37.2 -81	frequency falls below the configured Under Frequency Alarm Trip value
Frequency Relay	for longer than the Mains Transient Delay. The Underfrequency Alarm
	Trip value is adjustable to suit user requirements.

Over Frequency Alarm

Over Frequ	ency Ala	rms	
Enable 🗹			
Return	\$2.0	Hz	
Trip	\$5.0	Hz	

Parameter	Description
Mains Over Frequency	I = Alarm is disabled.
IEEE C37.2 -81	$\mathbf{\Sigma}$ = The module detects a Mains Failure when the mains supply
Frequency Relay	frequency rises above the configured Over Frequency Alarm Trip value
	for longer than the Mains Transient Delay. The Over Frequency Alarm
	Trip value is adjustable to suit user requirements.

3.9.5 MAINS CURRENT

Mains Current Options

Mains Current Op	otions				
CT Enabled	V				
CT Primary (L1)	- 600	A	-]		
CT Secondary	5 Amp	-			
Full Load Rating	÷ 192	kW]		
Full KVAr Rating	÷ 144	kVAr]		

Parameter	Description
Mains CT Enabled	I = Mains CT disabled
	$\mathbf{\Sigma}$ = Mains CT enabled. Only one CT for measuring mains current.
	The system assumes a balanced kw & kvar load and all phases mirror L1.
CT Primary (L1)	Primary rating of the three phase Current Transformers
CT Secondary	Secondary rating of the Current Transformers
Full Load Rating	Full load rating (100% rating) of the mains supply.
Full kVAr Rating	The kW and kvar rating must be correctly set.
	The values set here are the kW and kvar, NOT the kVA or Power Factor!
	These values are used for many functions including <i>Mains Power</i> and <i>Load Share</i> functions.

Mains Reverse Power (Mains Export Limit)

Mains Rev	erse Power (Mains Export Limit)
Enable	
Action	•
Trip	¢ 0 kW
Delay	0s
	_

Parameter	Description
Export Power	\Box = The DSE module does not monitor the export kilowatt.
	\mathbf{Z} = the DSE module measures power exported to the mains supply and
	provides an alarm condition if the <i>Export Power</i> value is exceeded by the
	Trip value for the configured Delay time.
Action	Select the type of alarm required from the list:
	Electrical Trip
	Warning
	For details of these, see section 5 entitled <i>Alarm Types</i> in this document.

3.10 MAINS DECOUPLING

NOTE: The Mains Decoupling protections only have effect when a digital input is configured for Mains Parallel mode instructing the module to operate in fixed export mode with the utility supply. In Single Set mode the Mains Decoupling protections have effect when the generator is in parallel with the Mains For more information on this application, refer to DSE Publication: 056-054 DSE8x10 in Fixed Export (Base Load) which is found on our website: www.deepseaelectronics.com

Mains Decoupling
Loss Of Mains
<u>Voltage</u>
Frequency

The *Mains Decoupling* section is subdivided into smaller sections. Select the required section with the mouse.

The controller includes "Main's decoupling" detection to be used with generating sets paralleling with the Mains (utility) supply.

When the generator set is in parallel with the Mains supply it is important that failure of the Mains is detected as soon as possible otherwise problems arise. It is not possible to simply monitor the Mains voltage and frequency as the sensing of this is now being fed by the generator itself!

Because of this and other possible dangerous situations, the power supply companies impose regulations when generators are in parallel. This is to detect Main's failure during parallel operation and to remove the generator from the grid in this situation.

Failure to detect and act upon loss of Mains supply when in parallel leads to the following effects:

- The generator feeds the site load and attempts to feed the load of the grid. Depending upon the generator size and the location of the network fault, this causes problems to the generator in terms of capacity and stability.
- If the generator can supply the load, Engineers working on the supposedly dead network would be in fact working on live cables, supplied by the generator set. This is potentially fatal.
- When the Mains supply is reconnected and the generator is still connected to the grid, the network would be connected to a generator not synchronised with it, with damaging results (mechanical failure, rotating diode failure, overloaded cables, pole slip etc)

3.10.1.1 LOSS OF MAINS

Options

Options			
Alarm Action	Electrical Trip 🔻		

Parameter	Description
Alarm Action	Select the type of alarm required from the list:
	Auxiliary Mains Fail - Opens the mains load switch and allows the bus
	to continue providing power to the load.
	<i>Electrical Trip</i> – The bus load switch is opened, and the set are allowed
	to perform a cooling run before being stopped.
	Warning – Audible alarm is generated. Breakers are not opened.
	For details of these, see the section 5 entitled Alarm Types in this
	document.

Rate Of Change Of Frequency Alarm

Parameter	Function
R.O.C.O.F. Alarm Enable IEEE C37.2 - 81 Frequency relay	□ = R.O.C.O.F. protection is disabled
	R.O.C.O.F. detection senses sudden, fast changes in the frequency of the waveform. During the failure of the Mains supply when in parallel with the generator, the frequency changes faster than is usual by either the on-load generator, or by the Mains supply.

Vector Shift Alarm

Parameter	Function
Vector Shift	□ = Vector Shift protection is disabled
	Vector Shift detection measures the length of each cycle of the voltage wave. When the Mains fails in parallel with the generator, the sudden change in load creates a change in the length of the cycle length.

3.10.1.2 VOLTAGE ALARMS

<u>Options</u>

Options	
Alarm Action	Auxiliary Mains Fail (AMF)
Parameter	Description
Alarm Action	Select the type of alarm required from the list: Single Set Electrical Trip Warning For details of these, see the section 5 entitled Alarm Types in this document.

<u>Limits</u>

Limits			
Impose IEEE 1547 Limits	No Limits 🔻		

Parameter	Description
Impose IEEE 1547 Limits	A NOTE: Category Limits are only applicable for 60Hz nominal frequency.
	Limit the Mains Decoupling Alarms as imposed by IEEE rules, options are: No Limits Category I Limit Category II Limit Category III Limit

Under Voltage Alarms

Under Voltage Alar	rms			
Stage 2 Enable 🗵	Trip 🛟 50 V PhN 💳	21.7% 5	0V PhN	Delay 📫 0.0 s
Stage 1 Enable 🗵	Trip 🗘 184 V PhN	 80.0% 1	84V PhN	Delay 🛟 2.5 s

These are '2 stage' alarms.
Stage 1 allows for a delayed operation if the voltage strays by a small amount.
Stage 2 allows for a faster trip if the voltage changes by a larger amount.
I = Mains Under Voltage does NOT give an alarm.
\square = Mains Under Voltage protection is enabled when the generator is in parallel with the Mains supply and an input configured for <i>Mains Parallel Mode</i> is active. The alarm activates when the Mains voltage falls below the configured <i>Under Voltage Alarm Trip</i> value for longer than the <i>Delay</i> . The <i>Under Voltage Alarm Trip</i> value is adjustable to suit user requirements.

Editing the Configuration

Nominal Voltage

Nominal Voltage	
	230 V PhN 100.0% 230V PhN

Parameter	Description
Mains Nominal Voltage	The Mains Nominal Voltage is locked to the same configuration as the
	Generator Nominal Voltage. This section is displayed for clarification
	purposes only.

Over Voltage Alarms

Over Voltage Alarr	ms		
Stage 1 Enable 🗵	Trip 262 V PhN	 113.9% 262V PhN	Delay 📫 1.0 s
Stage 2 Enable 🗵	Trip 274 V PhN	 119.1% 274V PhN	Delay 🗘 0.5 s

Parameter	Description
Mains Over Voltage, Stage 1 to Stage 2 IEEE C37.2 - 59AC	These are '2 stage' alarms. Stage 1 allows for a delayed operation if the voltage strays by a small amount
Overvoltage Relay	Stage 2 allows for a faster trip if the voltage changes by a larger amount.
	□ = Mains Over Voltage does NOT give an alarm. ☑ = Mains Over Voltage protection is enabled when the generator is in parallel with the Mains supply and an input configured for <i>Mains Parallel</i> <i>Mode</i> is active. The alarm activates when the Mains voltage rises above the configured <i>Over Voltage Alarm Trip</i> value for longer than the <i>Delay</i> . The <i>Over Voltage Alarm Trip</i> value is adjustable to suit user requirements.

3.10.1.3 FREQUENCY

<u>Options</u>

Auxiliary Mains Fail (AMF)
Description
Select the type of alarm required from the list: Single Set Electrical Trip Warning For details of these, see the section 5 entitled Alarm Types in this

<u>Limits</u>

Limits	
Impose IEEE 1547 Limits	No Limits 🔻

Parameter	Description
Impose IEEE 1547 Limits	NOTE: Category Limits are only applicable for 60Hz nominal frequency.
	The <i>Limits</i> is locked to the same configuration as in the <i>Mains</i> <i>Decoupling Voltage</i> section's <i>Limits</i> . This section is displayed for clarification purposes only.

Under Frequency Alarms

Under Frequency Alarms		
Stage 2 Enable 🕅 Trip 🗘 47.00 Hz =	94.0%	Delay 🔶 0.50 s
Stage 1 Enable 🖉 Trip 🗘 47.50 Hz =	95.0%	Delay 📮 20.00 s

Parameter	Description
Mains Under	These are '2 stage' alarms.
Frequency, Stage 1 to	Stage 1 allows for a delayed operation if the frequency strays by a small
IEEE C37.2 – 81L Frequency Relay	Stage 2 allows for a faster trip if the frequency changes by a larger amount.
	$\Box = \text{Mains Under Frequency does NOT give an alarm}$ $\Box = Mains Under Frequency protection is enabled when the generator is in parallel with the Mains supply and an input configured for MainsParallel Mode is active. The alarm activates when the Mains frequency falls below the configured Under Frequency Alarm Trip value for longer than the Delay. The Under Frequency Alarm Trip value is adjustable to suit user requirements.$

Editing the Configuration

Nominal Frequency

Nominal Frequency			
	\$ 50.0 Hz	 = 100.0%	

Parameter	Description
Mains Nominal	The Mains Nominal Frequency is locked to the same configuration as
Frequency	the Generator Nominal Frequency. This section is displayed for
	clarification purposes only.

Over Frequency Alarms

Over Frequency Ala	arms			
Stage 1 Enable 🗵	Trip 🛟 52.0 Hz]	104.0%	Delay 🗘 0.5 s
Stage 2 Enable 🗵	Trip 🛟 52.5 Hz		105.0%	Delay 📮 0.0 s

Parameter	Description
Mains Over Frequency,	These are '2 stage' alarms.
Stage 1 to Stage 5 IEEE C37.2 – 81H Frequency	Stage 1 allows for a delayed operation if the frequency strays by a small amount.
Relay	Stage 2 allows for a faster trip if the frequency changes by a larger amount.
	□ = Mains Over Frequency does NOT give an alarm

3.11 ENGINE

The *Engine* section is subdivided into smaller sections. Select the required section with the mouse.

Engine Engine Protection **Oil Pressure** Coolant Temperature Fuel Level Fuel Use and Efficiency **DEF** Level Engine Options ECU (ECM) Options ECU (ECM) Alarms Gas Engine Options Cranking Idle Setting Speed Sensing Speed Settings Plant Battery Inlet Temperature Engine Icon Displays

3.11.1 ENGINE PROTECTION

Water in Fuel

Water In Fuel		
Action	Warning	•
Arming	Always	-
Activation Delay	0s	

Parameter	Description
Action	The alarm activates when a <i>Water in Fuel</i> alarm is received from the engine ECU, or if a digital input configured for <i>Water in Fuel</i> actives for longer than the configured <i>Activation Delay</i> timer. The alarm action list is as follows, see section 5 entitled <i>Alarm Types</i> for more information:
	None
	Electrical Trip
	Shutdown
	Warning
Arming	Select when the alarm is active, see section 6 entitled <i>Alarm Arming</i> for more information:
	Active from Breaker Closed
	Active from Parallel
	Always
	From Safety On
	From Starting
	Never
	When Stationary

Fuel Tank Bund

Parameter	Description
Action	The alarm goes active when a digital input configured for <i>Fuel Tank Bund Level</i> <i>High</i> activates The input is designed to connect to a level switch within the tank bund (sometimes known as the Fuel Retention Tank). This is used to detect fuel leaks and overflows. The alarm action list is as follows, see section 5 entitled <i>Alarm Types</i> for more information: Electrical Trip
	Shutdown
	Warning

3.11.2 OIL PRESSURE

ONOTE: The DSE module reads oil pressure from the ECU (ECM) if the selected Engine Application supports it. In these cases, Analogue Input A is configured as Flexible Analogue or Digital Input. Configuration of Flexible Analogue Inputs and Digital Inputs are detailed in sections 3.4.1 & sections 3.4.3.1 in this document.

Input Type

Parameter	Description
Input Type	Select the sensor type and curve from a pre-defined list or create a user-defined
	curve.
	Resistive: for sensors with maximum range of 0 Ω to 3 k Ω
	Current: for sensors with maximum range of 0 mA to 20 mA
	Voltage: for sensors with maximum range of 0 V to 10 V

3.11.2.1 EDITING THE OIL SENSOR CURVE

While the *DSE Configuration Suite* holds sensor specifications for the most used resistive sensors, occasionally it is required that the module be connected to a sensor not listed by the *DSE Configuration Suite*. To aid this process, a sensor curve editor is provided.

Sensor Open Circuit Alarm

Sensor Open Circuit Alarm		
Enable Alarm 🗷		

Parameter	Description
Enable Alarm	\Box = Alarm is disabled.
	✓ = The Low Oil Pressure Open Circuit Alarm is active when the module
	detects an open circuit when the sensor is disconnected.

ANOTE: Open Circuit alarm is only available for resistive sensors. A Warning/Shutdown alarm must be enabled to enable this option.

Low Oil Pressure Alarms

Low Oil Pres	sure Alarms		
Shutdown Trip	✓ 1.03	Bar	103 kPa, 14.94 PSI
Pre-Alarm	V		
Trip	÷ 1.24	Bar	124 kPa, 17.98 PSI
Return	÷ 1.38	Bar	138 kPa, 20.02 PSI

Parameter	Description
Low Oil Pressure	= Alarm is disabled.
Shutdown	☑ = The Low Oil Pressure Shutdown Alarm is active when the measured oil
	pressure drops below the configured <i>Trip</i> level.
Low Oil Pressure	I = Alarm is disabled.
Pre-Alarm	I = The Low Oil Pressure Pre-Alarm is active when the measured oil pressure
	drops below the configured <i>Trip</i> level. The warning is automatically reset when
	the oil pressure increases above the configured Return level.

3.11.3 COOLANT TEMPERATURE

The *Coolant Temperature* page is subdivided into smaller sections. Select the required section with the mouse.

Coolant Temperature

Coolant Temperature Alarm

Coolant Temperature Control

3.11.3.1 COOLANT TEMPERATURE ALARM

ANOTE: The DSE module reads oil pressure from the ECU (ECM) if the selected Engine Application supports it. In these cases, Analogue Input B is configured as Flexible Analogue or Digital Input. Configuration of Flexible Analogue Inputs and Digital Inputs are detailed in sections 3.4.1 & sections 3.4.3.1 in this document.

Input Type

Input Type		Click to edit the sensor
VDO 120 °C	▼ Edit	curve. See section entitled Editing The Sensor Curve.
ι		

Parameter	Description
Input Type	Select the sensor type and curve from a pre-defined list or create a user-
	defined curve.
	Resistive: for sensors with maximum range of 0 Ω to 3 k Ω
	Current: for sensors with maximum range of 0 mA to 20 mA
	Voltage: for sensors with maximum range of 0 V to 10 V
3.11.3.2 EDITING THE COOLANT SENSOR CURVE

While the *DSE Configuration Suite* holds sensor specifications for the most used resistive sensors, occasionally it is required that the module be connected to a sensor not listed by the *DSE Configuration Suite*. To aid this process, a sensor curve editor is provided.

Sensor Open Circuit Alarm

Sensor Open Circuit Alarm	
Enable Alarm 🗷	

Parameter	Description
Enable Alarm	= Alarm is disabled.
	☑ = The Coolant Temperature Open Circuit Alarm is active when the module
	detects an open circuit when the sensor is disconnected.

Low Coolant Temperature Alarms

Low Coolant	Temperatur	e Alarms	
Pre-Alarm	V		
Trip	÷ 70	°C	158 °F
Return	÷ 75	°C	167 °F

Parameter	Description
Low Coolant	= Alarm is disabled.
Temperature	☑ = The Low Coolant Temperature Pre-Alarm is active when the measured
Pre-Alarm	coolant temperature falls below the configured Trip level. The Warning is
	automatically reset when the coolant temperature rises above the configured
	Return level.

High Coolant Temperature Alarms

Parameter	Description
High Coolant	= Alarm is disabled.
Temperature	Image = The High Coolant Temperature Pre-Alarm is active when the measured
Pre-Alarm	coolant temperature rises above the configured Trip level. The Warning is
	automatically reset when the coolant temperature falls below the configured
	Return level.
High Coolant	= Alarm is disabled.
Temperature	☑ = The High Coolant Temperature Controlled Shutdown Alarm is active when
Electrical Trip	the measured coolant temperature rises above the configured Trip level.
High Coolant	The High Coolant Temperature Shutdown Alarm is active when the measured
Temperature	coolant temperature rises above the configured Trip level.
Shutdown	

3.11.3.3 COOLANT TEMPERATURE CONTROL

Coolant Heater Control

Coolant Heater Control	
Enable 🗷	
On 🛟 50 °C 🔤	122 °F
Off 🛟 55 °C	131 °F

Parameter	Description
Coolant Heater	= Coolant Heater Control function is disabled.
Control	\square = The digital output configured to <i>Coolant Heater Control</i> is energised when the engine coolant temperature falls below the configured <i>On</i> level. This is designed to control an external engine heater. When the coolant temperature rises above the configured <i>Off</i> level, the digital output is de-energised.

Coolant Cooler Control

C	oolant Coole	er Control	
	Enable 🗵		
	Off 🔶 70	°C 0°	158 °F
	On 🔶 75	°C	167 °F
	Disable w	nen set not available 🔲	

Parameter	Description
Coolant Cooler Control Enable	$\Box = \text{Coolant Cooler Control function is disabled.}$ $\Box = \text{The digital output configured to Coolant Cooler Control is energised}$ when the engine coolant temperature exceeds the configured On level. This is designed to control an external engine cooling system, for instance an additional cooling fan.
	digital output is then de-energised.

Fan Control

Fan Control		
Fan Overrun Delay	15s	

Parameter	Description	
Fan Control	An output configured to Fan Control energises when the engine becomes	
	available (up to speed). This output is designed to control an external	
	When the engine stops, the cooling fan remains running for the duration	
	of the Fan Overrun Delay.	

3.11.4 FUEL LEVEL

The *Fuel Level* page is subdivided into smaller sections. Select the required section with the mouse.

Fuel Level

Fuel Control and Monitoring

Fuel Alarms

3.11.4.1 FUEL CONTROL AND MONITORING

Input Type

Voltage: for sensors with maximum range of 0 V to 10 V

3.11.4.2 CREATING/EDITING FUEL CONTROL & MONITORING SENSOR

While the *DSE Configuration Suite* holds sensor specifications for the most used resistive sensors, occasionally it is required that the module be connected to a sensor not listed by the *DSE Configuration Suite*. To aid this process, a sensor curve editor is provided.

The sensor curve that is to be used by the analogue input or edited.	
Input Type Not Used Create	Click to edit the selected sensor curve or create a curve if a curve is not selected.

When creating a new sensor curve the measurement quantity and measured parameter are required.

Select Axis Units			
X-Axis (Measured Quantity)	Resistive (Ohms)	Click to bogin o	reating
Y-Axis	Percentage (%)	the new sensor	curve
		OK Cancel	

Parameter	Description
X-Axis	Select the electrical quantity that the sensor outputs.
(Measured	Current (mA): For sensors that output current within a range 0 mA to 20 mA
Quantity)	Voltage (0-10 Volts): For sensors that output voltage within a range of 0 V to 10 V
	Voltage (0-32 Volts): For sensors that output voltage within a range of 0 V to 32 V
	Resistive (Ohms): For sensors that output a resistance within a range 0 Ω to 3K Ω
	on Analogue Input A and 0 to 5K Ω on Analogue Inputs B to G
Y-Axis	Select the parameter that is being monitored by the sensor.
	Temperature (°C): For sensors that measure temperature.
	Pressure (Bar): For sensors that measure pressure.
	Percentage (%): For sensors that measure percentage.

Sensor curve creation and editor descriptions are continued overleaf...

Accurate Fuel Measurement

In the case of a parallel sided fuel tank, an accurate measure of the fuel level is easily made, however this is not the case with non-parallel sided fuel tanks. Alteration to the fuel level sensor curve is required for non-parallel sided to attain more accurate level indication. This is because a fuel level sensor measures the distance between the top of the tank and the fuel level.

Fuel Pump Control

Fuel Pump Control		
Enable		
On	25	%
Off	- 75	%

Parameter	Description
Fuel Pump	= Fuel Pump Control is disabled.
Control Enable	$\mathbf{\Sigma}$ = Allows the module to control an external fuel pump to transfer fuel from a
	bulk tank to the day tank.
	A digital output configured for Fuel Pump Control energises when the fuel level
	falls below the configured On setting and de-energises when the fuel level
	exceeds the configured Off setting.

Fuel Monitoring

Fuel Monitoring	
Fuel Tank Size	
Logging Interval	8h
Stable Timer	0.5s
Change Indicating Filling	1 %
Change Indicating Stable	1 %

Parameter	Description			
Fuel Tank Size	Select the tank size and the units for the module's display:			
	Imperial Gallons			
	Litres			
	US Gallons			
Logging Interval	The interval at which the fuel level is stored in the event log.			
Stable Timer	The controller maintains a rolling record of the fuel level percentage for the			
	duration of the Stable Timer.			
	When the rolling record of the fuel level percentage indicates that the fuel level			
	has increased more than the Change Indicating Filling during the Stable Timer,			
	the controller records a Fuel Filling Start event in its event log.			
	When the rolling record of the fuel level indicates that the fuel level has not			
	changed more than the Change Indicating Stable during the Stable Timer the			
	controller records a Fuel Filling Stop event in its event log			
Change	When the fuel level increases at a rate higher than			
Indicating Filling				
5 5	Change Indicating Filling			
	Stable Timer			
	Then a fuel fill start event is recorded into the event log.			
	Example			
	Stable Timer = 1 minute			
	Change mulcaung Filling = 3 %			
	When the fuel level increases by more than 3% in 1 minute, a fuel fill event is			
	recorded.			
Change				
Indicating Stable	During filling if the fuel level increases at a rate less than			
	Change Indicating Stable			
	Stable Timer			
	then a fuel fill and event is recorded into the event log. Depending on			
	configuration this generates a dial out or SMS message			
	configuration this generates a tial but of Sivio message.			
	Example:			
	Stable Timer = 1 minute			
	Change Indicating Stable = 2 %			
	When the fuel level increases by less than 2% in 1 minute, a fuel fill end event			
	is recorded.			

3.11.4.3 FUEL ALARMS

Sensor Open Circuit Alarm

Sensor Open Circuit Alarm	
Enable Alarm	

Parameter	Description
Enable Alarm	= Alarm is disabled.
	✓ = The Open Circuit Alarm activates with the configured

Low Fuel Level Alarms

Low Fuel Leve	el Al	arms		
Alarm	V			
Action		Shutdown		•
Trip		2 5	%	
Delay		0s		
Pre-Alarm	V			_
Trip		÷ 30	%	
Return		- 40	%]
Delay		0s		0

Parameter	Description	
Low Fuel Level	\Box = Alarm is disabled.	
Alarm	\mathbf{M} - The Low Fuel Level Alarm activates with the configured Action when the	
Alalin	E = The Low Fuel Level Alam activates with the configured Action when the	
	measured fuel level drops below the Trip setting for the configured Delay time.	
Action		
	ONOTE: For details of these, see the section 5 entitled Alarm Types in	
	this document	
	Select the type of alarm required from the list:	
	Electrical Trip	
	Shutdown	
Low Fuel Level	Image: Alarm is disabled.	
Pre-Alarm	☑ = The Low Fuel Level Pre-Alarm activates with the configured Action when	
	the measured fuel level drops below the Low Pre-Alarm Trip setting for the	
	configured <i>Delay</i> time. The Pre-Alarm is automatically reset when the fuel level	
	even de la configurad Low Dra Alerra Datura cotting	
	rexceeds the configured Low Pre-Alarm Return Setting.	

High Fuel Level Alarms

High Fuel Lev	el Alarms	
Pre-Alarm Return Trip Delav	♥ \$\$ 95 \$ 100 0s	
Alarm Action Trip Delay	Shutdown \$105 0s	

Parameter	Description		
High Fuel Level	= Alarm is disabled.		
Pre-Alarm	☑ = The High Fuel Level Pre-Alarm activates with the configured Action when		
	the measured fuel level rises above the <i>High Pre-Alarm Trip</i> setting for the		
	configured <i>Delay</i> time. The pre-alarm is automatically reset when the fuel level		
	drops below the configured <i>High Pre-Alarm Return</i> setting.		
High Fuel Level	= Alarm is disabled.		
Alarm	$\mathbf{\Sigma}$ = The High Fuel Level Alarm activates with the configured Action when the		
	measured fuel level raises above the <i>Trip</i> setting for the configured <i>Delay</i> time.		
Action			
	AANOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> in		
	this document.		
	Select the type of alarm required from the list:		
	Electrical Trip		
	Shutdown		

Fuel Usage Alarm

Fuel Usage Ala	irm	
Enable	V	
Mode	Standard Mode	•
Action	Warning Always Latched	•
Running Rate	10 % / Hr 🔤	
Stopped Rate	10 % / Hr 🔤	

Parameter	Description
Fuel Usage	= Alarm is disabled.
Alarm Enable	\blacksquare = Provides an alarm to monitor the usage of the fuel.
	The alarm activates when the fuel level drops at a higher rate than the
	configured Running Rate while the engine is running. Or if the fuel level drops
	at a higher rate than the configured Stopped Rate while the engine is stopped.
	This alarm is provided to check for fuel leakage problems or potential fuel theft.
Mode	Sampling Window: The fuel usage alarm activates when the fuel level
	decreases at a higher rate per Sampling Window than the configured Running
	Rate while the engine is running or Stopped Rate while the engine is stopped.
	Standard Mode: The fuel usage alarm activates when the fuel level decreases
	at a higher rate per hour than the configured Running Rate while the engine is
	running or Stopped Rate while the engine is stopped.
Action	The alarm action list is as follows, see section 5 entitled <i>Alarm Types</i> for more
	information:
	Electrical Trip
	Latched Indication
	Shutdown
	Warning Always Latched

3.11.5 FUEL USE AND EFFICIENCY

Engine Efficiency Curve

Specific Gravity	0.89
Engine Type	Typical Diesel Engine 👻 🛛 Edit
Engine Efficiency Curve	

Parameter	Description
Engine Type	Select the engine type from a pre-defined list or create a user-defined curve.
Specific Gravity	The relative fuel density of the fuel (usually given as kg/m3) being consumed
	by the generator.

Instrumentation Sources

In	strumentation Sources		
	Instantaneous Fuel Consumption	Efficiency Curve	Ŧ
	Trip Average Fuel Consumption	Efficiency Curve	*
	Trip Fuel Usage	Efficiency Curve	-
	Accumulated Fuel Usage	Efficiency Curve	*
	Instantaneous Efficiency	Efficiency Curve	Ŧ
	Trip Average Efficiency	Efficiency Curve	•
	Estimate Run Time to Empty	Module Sensor	•

Parameter	Description
Instantaneous Fuel Consumption	 Not Used: Instantaneous Fuel Consumption is not displayed Efficiency Curve: The DSE module calculates the Instantaneous Fuel Consumption as Litre/hour from Generator Total kW Percentage using the Efficiency Curve and Specific Gravity. Engine ECU: The DSE module reads the Instantaneous Fuel Consumption as Litre/hour from the engine ECU.
Trip Average Fuel Consumption	Not Used: Trip Average Fuel Consumption is not displayed Efficiency Curve: The DSE module calculates the Trip Average Fuel Consumption as litre/hour over the current or last run from Generator Total kW Percentage using the Efficiency Curve and Specific Gravity. Engine ECU: The DSE module reads the Trip Average Fuel Consumption as litre/hour over the current or last run from the engine ECU. Module Sensor: The DSE module calculates the Trip Average Fuel Consumption as litre/hour over the current or last run from the change in fuel tank level using the Fuel Tank Size.
Trip Fuel Usage	 Not Used: Trip Fuel Usage is not displayed Efficiency Curve: The DSE module calculates the Trip Fuel Usage as litres over the current or last run from Generator Total kW Percentage using the Efficiency Curve and Specific Gravity. Engine ECU: The DSE module reads the Trip Fuel Usage as litres over the current or last run from the engine ECU. Module Sensor: The DSE module calculates the Trip Fuel Usage as litres over the current or last run from the change in fuel tank level using the Fuel Tank Size.

Parameter descriptions are continued overleaf...

Parameter	Description
Accumulated	Not Used: Accumulated Fuel Usage is not displayed.
Fuel Usage	<i>Efficiency Curve:</i> The DSE module calculates the <i>Accumulated Fuel Usage</i> as
	litres over the entire run time from Generator Total kW Percentage using the
	Efficiency Curve and Specific Gravity.
	Engine ECU: The DSE module reads the Accumulated Fuel Usage as litres over
	the entire run time from the engine ECU.
	Module Sensor: The DSE module calculates the Accumulated Fuel Usage as
	Tark Over the entire run time from the change in fuel tank level using the Fuel
Instantanasus	Tank Size.
Instantaneous Efficiency	Not Used: Instantaneous Elliciency is not displayed.
Enciency	Linciency Curve: The DSE module calculates the instantaneous Emclency as
	Specific Crowity
	Specific Gravity.
	Litre/hour from the engine ECU and calculates the Instantaneous Efficiency as
	kWb/litre using the Generator Total kW Percentage
Trin Average	Not Used: Trip Average Efficiency is not displayed
Efficiency	Efficiency Curve: The DSE module calculates the Trip Average Efficiency as
Lineieney	kWh/litre over the current or last run from Generator Total kW Percentage using
	the Efficiency Curve and Specific Gravity.
	Engine ECU: The DSE module reads the Trip Average Fuel Consumption as
	Litre/hour from the engine ECU over the current or last run and calculates the Trip
	Average Efficiency as kWh/litre using the Generator Total kW Percentage.
	Module Sensor: The DSE module calculates the Trip Average Efficiency as
	kWh/litre over the current or last run from the change in fuel tank level using the
	Fuel Tank Size and Generator Total kW Percentage.
Estimate Run	Not Used: Estimate Run Time to Empty is not displayed.
Time to	Engine ECU: The DSE module reads the Instantaneous Fuel Consumption as
Empty	Litre/hour from the engine ECU and <i>Estimates Run Time to Empty</i> using the <i>Fuel</i>
	Tank Size.
	Module Sensor: The DSE module Estimates Run Time to Empty using the Run
	Time Until Empty parameters.

Run Time Until Empty

Run Time Until Empty			
Fuel Tank Run Time	- 480	m 🔤	8h 0m
Fuel Tank Run Time Load Level Percentage	÷ 100	%	

Parameter	Description
Fuel Tank Run Time	The time in minutes how long the generator's fuel tank last when running
	at the Fuel Tank Run Time Load Level Percentage.
Fuel Tank Run Time	The percentage of full load kW the generator which is used to calculate
Load Level	how long the fuel in the tank lasts.
Percentage	

3.11.6 DEF LEVEL

NOTE: Configuration of alarms in this section only has effect when the ECU (ECM) supports DEF Level.

NOTE: Configuration of the *Alarm Action* in this section defines the DSE module response to the CANbus message; however, the ECU (ECM) still shuts down the engine depending on the alarm severity.

DEF Level is a CANbus message from the ECU (ECM). The following parameters allow configuration of how the DSE module responds to the DEF Level.

Level Alarms			
Low Alarm Enable Action Trip Delay	Shu \$ 0s	itdown 10	× %]
Low Pre-alarm Enable Trip Return Delay	V v Os	30 40	%

Parameter	Description			
DEF Level Low Alarm	\Box = Disable the alarm.			
Enable	\blacksquare = DEF Low Alarm will be activated when the DEF Level sent from			
	the ECU is below the configured <i>Trip</i> level for longer than the			
	configured <i>Delay</i> time.			
Action	Select the type of alarm required from the list:			
	Electrical Trip			
	Shutdown			
	For details of these, see the section 5 entitled <i>Alarm Types</i> in this			
	document.			
DEF Level Low Pre-Alarm	= The Pre-alarm is disabled.			
	\blacksquare = DEF Low Pre-Alarm will be activated when the DEF Level sent			
	from the ECU is below the configured <i>Trip</i> level for longer than the			
	configured <i>Delay</i> time.			
	The Pre-Alarm is deactivated when the DEF Level rises above the			
	Return level.			

3.11.7 ENGINE OPTIONS

ECU (ECM) Options

ECU (ECM) Options		(
Engine Type Enhanced J1939 Alternative Engine Speed Modbus Engine Comms Port Disable ECM Speed Control	Cummins CM2250 RS485 Port	•	These items are read only and not adjustable. To change these items, visit the <i>Module</i> <i>Application</i> menu.

Parameter	Description
Disable ECM Speed	Disables speed control by the DSE module. Useful when an external
Control	device (i.e., remote speed potentiometer) is used to control engine speed.

Miscellaneous Options

Miscellaneous Options	
J1939-75 Instrumentation Enable	
CAN source address (instrumental	tion) <u>44</u>

Parameter	Description
J1939-75	Allows the DSE module to be interrogated by another CAN device and
Instrumentation Enable	transfer the generator set instrumentation over J1939 link.
J1939-75 Alarms	Allows the DSE module to be interrogated by another CAN device and
Enable	transfer the alarms over J1939 link.
CAN Source Address	Set the CAN Source Address for the DSE module over which other
(Instrumentation)	CANbus devices read the generator set instrumentation.

Startup Options

Startup Options	
Start Attempts	\$ 3

Parameter	Description
Start Attempts	The number of starting attempts the module makes. If the module does not detect that the engine has fired before the end of the <i>Cranking Time</i> , then the current start attempt is cancelled, and the <i>Crank Rest</i> time takes place before the next crank attempt begins. If, after all configured <i>start attempts</i> , the engine is not detected as running, the <i>Fail to Start</i> shutdown alarm is generated.
	The engine is detected as running by checking all methods of <i>Crank Disconnect</i> . For further details, see the section 3.11.11 entitled <i>Cranking</i> in this document.

Pre-heat

ONOTE: For this feature to have effect, configure a digital output for *Pre-Heat.*

NOTE: Depending on *Engine Type* configuration, this is controlled direct by the ECU (ECM).

Pre-heat					
Enabled					
On	÷ 50	°C]		122 °F
Duration	0s				

Parameter	Description		
Enabled	= Pre-heat is not temperature dependent.		
	☑ = When the <i>Coolant Temperature</i> is below the configured <i>On</i> level, the <i>Pre-</i>		
	Heat digital output is activated for the set <i>Duration</i> of time before cranking.		
On	Set the coolant temperature below which the pre-heat is activated.		
Duration	Set the time delay during which the Pre-Heat digital output remains active before		
	cranking.		

Post-heat

ONOTE: For this feature to have effect, configure a digital output for *Pre-Heat.*

ANOTE: Depending on *Engine Type* configuration, this is controlled direct by the ECU (ECM).

Parameter	Description	
Enabled	= Post-heat is not temperature dependent.	
	☑ = When the Coolant Temperature is below the configured On level, the Pre-	
	Heat digital output is activated for the set Duration of time after cranking and	
	before the set is considered available.	
On	Set the coolant temperature below which the pre-heat is activated.	
Duration	Set the time delay during which the Pre-Heat digital output remains active after	
	cranking and before the engine is considered available.	

NOTE: A Duration Timer is used on both *Pre-heat* prior to the engine starting and *Post-heat* when the engine is considered available.

3.11.8 ECU (ECM) OPTIONS

Engine Hours

Engine Hours	
Module to Record Engine Hours	

Parameter	Description
Module to Record	When enabled, DSE module counts Engine Run Hours.
Engine Hours	When disabled, Engine ECU (ECM) provides Run Hours.

DPF Regeneration Control

DPF Regeneration Control	
Allow Non-Mission Regeneration	

Parameter	Description
DPF Regeneration	Available for ECUs (ECM) which require the engine speed to drop
Control	during a manual regeneration cycle. During this time, the generator is not available to supply power and the under speed and under frequency alarms are not active.

Speed Switch

Speed Switch	
Enable	Default Dataset ECU 🔻

Parameter	Description
Speed Switch	Defines the method of speed control over CANbus when supported by
	the ECU (ECM). Selection needs to match the ECU (ECM) calibration
	for the speed control method.
	Available speed control methods to choose from:
	0: CAN Open Increase Decrease
	1: ECU Increase Decrease Input
	2: CAN Open Increase Decrease
	3: ECU Analogue Absolute
	4: ECU Analogue Relative
	5: ECU Frequency Input
	6: ECU CANopen Analogue
	7: CANOpen Speed Demand

Continued Overleaf...

Example:

For some Volvo *Engine Types*, the *Speed Switch* indicates specific options as shown below.

Speed Switch	
Enable	Always 👻

Parameter	Description
Speed Switch Enable	Defines the method of speed control over CANbus when supported by the Volvo ECU (ECM). Selection needs to match the ECU (ECM) calibration for the speed control method. Available speed control methods to choose from: <i>Always</i> <i>Never</i> <i>On Change</i>

ECU Wakeup

ECU Wakeup		
Enable	V	
Periodic Wakeup Time	1h]
Coolant Measurement Persistence		

Parameter	Description
ECU Wakeup Enable	 = Option is disabled. = The ECU will be energised for either 2 minutes (ECU wakeup time) or 10 seconds after the ECU coolant temperature measurement has been received, whichever is shorter.
Coolant Measurement	
Persistence	A NOTE: Available only when <i>ECU Wakeup</i> is enabled.

Engine CAN Termination

Engine CAN Termination	
Engine CAN Termination Disable	

Parameter	Description
Engine CAN	\Box = The internal resistor of 120 Ω is connected when the unit is
Termination Disable	powered.
	$\mathbf{\overline{M}}$ = The internal 120 Ω termination resistor is disabled, one must be
	fitted across the H and L terminals if the module is the first or last on the
	link.

<u>Droop</u>

Droop		
Enable		
	<u></u> 4.0 %	

Parameter	Description
Droop	NOTE: Droop options are only available where supported by the Engine ECU (ECM) over the CAN or Modbus datalink. Contact the engine manufacturer for further details.
	\square = Engine droop is not enabled. \blacksquare = Where supported by the electronic engine ECU (ECM), the module enables droop in the engine ECU (ECM) governor at the configured percentage.

DTC Ignore List

DTC
6 🗔 🌲
7 🗋 🗘
8 🔲 🗘
9 🔲 🗘
10 🗌 🗘

Parameter	Description
DTC Ignore List	Choose the specific DTC for the module to ignore. The module allows the engine to keep running when the ignored SPN occurs; however, depending on the severity, the engine shuts down based on the ECU (ECM) calibration. This is used to mask certain indications or warnings on the ECU (ECM) and not display them on the DSE module.

Miscellaneous

Miscellaneous	
CAN source address (engine message	s) 🗘 220

Parameter	Description
CAN Source Address	Set the CAN Source Address for the DSE module over which other
(Engine Messages)	CANbus devices read the modules data

3.11.9 ECU (ECM) ALARMS

ANOTE: This section is only available when the module is connected to an ECU.

The *ECU (ECM)* Alarms section is subdivided into smaller sections. Select the required section with the mouse.

ECU (ECM) Alarms
ECU (ECM) Data Fail
DM1 Signals
Advanced
Message Failure

3.11.9.1 ECU (ECM) DATA FAIL

ECU (ECM) Data	Fail
Action	Shutdown 💌
Arming	Engine Protection Activation 💌
Activation Delay	0s 📘

Paramotor	Description
ECU (ECM) Data	Provides protection against failure of the ECU (ECM) CAN data link.
	The alarm action list is as follows, see section 5 entitled <i>Alarm Types</i> for more information:
	Electrical Trip
	Shutdown Warning
Arming	Select when the CAN ECU (ECM) Data Fail alarm is active.
	Options are as follows, see the section 6 entitled <i>Alarm Arming</i> for more information:
	Active From Breaker Closed
	Active From Mains Parallel
	Always From Safety On
	From Starting
	Never:
	When Stationary
Activation Delay	The amount of time before the module activates the CAN ECU (ECM) Data
	<i>Fall</i> after a fallure.

3.11.9.2 DM1 SIGNALS

ANOTE: Configuration of parameters in this section only has effect when the ECU (ECM) supports these features.

NOTE: Configuration of the *Alarm Action* in this section defines the DSE module response to the CAN message; however, the ECU (ECM) still shuts down the engine depending on the alarm severity.

DM1 signals are messages from the CAN (ECM) ECU. The following parameters allows configuration of how the DSE module responds to these messages.

ECU Amber

E	CU Amber		
	Action	Warning	•
	Arming	Always	•
	Activation Delay	0s	

Parameter	Description
ECU Amber Action	The action the DSE module takes when receiving and ECU Amber fault condition.
	The alarm action list is as follows, see section 5 entitled <i>Alarm Types</i> for more information:
	None
	Electrical Trip
	Shutdown
	Warning
Arming	Select when the DSE module activates it ECU Amber alarm.
	Options are as follows, see the section 6 entitled <i>Alarm Arming</i> for more
	information:
	Active From Breaker Closed
	Active From Mains Parallel
	Always
	From Safety On
	From Starting
	Never:
	When Stationary
Activation Delay	The amount of time before the module activates the ECU Amber alarm after
	a receiving an ECU Amber fault condition from the ECU.

ECU Red

ECU Red	
Action	Shutdown 👻
Arming	From Safety On 🔻
Activation Delay	0s 📘

Parameter	Description
ECU Red Action	The action the DSE module takes when receiving and ECU Red fault condition.
	The alarm action list is as follows, see section entitled <i>Alarm Types</i> for more information:
	None
	Electrical Trip
	Shutdown
	Warning
Arming	Select when the DSE module activates it ECU Red alarm.
	Options are as follows, see the section 6 entitled <i>Alarm Arming</i> for more
	information:
	Active From Breaker Closed
	Active From Mains Parallel
	Always
	From Safety On
	From Starting
	Never:
	When Stationary
Activation Delay	The amount of time before the module activates the ECU Red alarm after a
	receiving an ECU Red fault condition from the ECU.

ECU Malfunction

ECU Malfunction	I			
Action	Warning	•		
Arming	Always	•		
Activation Delay	0s			

Parameter	Description
ECU Malfunction Action	The action the DSE module takes when receiving and ECU Malfunction fault condition.
	The alarm action list is as follows, see section entitled <i>Alarm Types</i> for more information:
	None
	Electrical Trip
	Shutdown
	Warning
Arming	Select when the DSE module activates it ECU Malfunction alarm.
	Options are as follows, see the section 6 entitled <i>Alarm Arming</i> for more
	information:
	Active From Breaker Closed
	Active From Mains Parallel
	Always
	From Safety On
	From Starting
	Never:
	When Stationary
Activation Delay	The amount of time before the module activates the ECU Malfunction alarm
	atter receiving an ECU Maltunction fault condition from the ECU.

ECU Protect

CU Protect	
Action	Warning 👻
Arming	From Safety On 👻
Activation Delay	0s

Parameter	Description
ECU Protect Action	The action the DSE module takes when receiving and ECU Protect fault condition.
	The alarm action list is as follows, see section entitled <i>Alarm Types</i> for more information:
	None
	Electrical Trip
	Shutdown
	Warning
Arming	Select when the DSE module activates it ECU Protect alarm.
	Options are as follows, see the section 6 entitled <i>Alarm Arming</i> for more
	information:
	Active From Breaker Closed
	Active From Mains Parallel
	Always
	From Safety On
	From Starting
	Never:
	When Stationary
Activation Delay	The amount of time before the module activates the ECU Protect alarm after
	receiving an ECU Protect fault condition from the ECU.

3.11.9.3 ADVANCED

DPTC Filter

DPTC Filter	
Enabled	
Action	Warning 👻
Arming	From Safety On 🔻

Parameter	Description			
DPTC Filter	□ = The DSE module's <i>DPTC Filter</i> alarm is disabled, it does not act upon			
Enabled	any DPTC Filter fault conditions from the ECU.			
	\square = The DSE module's <i>DPTC Filter</i> alarm is enabled. The action the DSE			
	module takes when receiving a DPTC Filter fault condition from the ECU.			
	The alarm action list is as follows, see section 5 entitled Alarm Types for			
	more information:			
	Electrical Trip			
	Indication			
	Shutdown			
	Warning			
Arming	Select when the DSE module activates its DPTC Filter alarm.			
-	Options are as follows, see the section 6 entitled <i>Alarm Arming</i> for more			
	information:			
	Always			
	From Safety On			
	From Starting			

HEST Active

HEST Active	
Enabled	
Action	Warning 👻
Arming	From Safety On 🔻

Parameter	Description
HEST Active	□ = The DSE module's <i>HEST</i> alarm is disabled, it does not act upon any
Enabled	HEST fault conditions from the ECU.
	\blacksquare = The DSE module's <i>HEST</i> alarm is enabled. The action the DSE module
	takes when receiving a HEST fault condition from the ECU.
	The alarm action list is as follows, see section 5 entitled <i>Alarm Types</i> for
	more information:
	Indication
	Warning
Arming	Select when the DSE module activates its <i>HEST</i> alarm.
	Options are as follows, see the section 6 entitled <i>Alarm Arming</i> for more
	information:
	Always
	From Safety On
	From Starting

DEF Level

Enabled 🗵		1
Action	Warning 🔹	
Arming	From Safety On 🔻	
Activation Delay	/ 0s	

Parameter	Description
DEF Level Enabled	\Box = The DSE module's <i>DEF Level</i> alarm is disabled; it does not act upon any DEF Level fault conditions from the ECU.
	$\mathbf{\nabla}$ = The DSE module's <i>DEF Level</i> alarm is enabled. The action the DSE
	The alarm action list is as follows, see section entitled Alarm Types for more
	information:
	Electrical Trip
	Shutdown
	Warning
Arming	Select when the DSE module activates its <i>DEF Level</i> alarm.
	Options are as follows, see the section 6 entitled <i>Alarm Arming</i> for more
	information:
	Always
	From Safety On
	From Starting
	Loading Alarms Activation
	Never:
	When Stationary
Activation Delay	The amount of time before the module activates the <i>DEF Level</i> alarm after a receiving a DEF Level fault condition from the ECU.

SCR Inducement

SCR Inducement	
Enabled 🛛	
Action	Warning 👻
Arming	From Safety On 💌
Activation Delay	0s 🗍

Parameter	Description		
SCR Inducement	t = The DSE module's <i>SCR Inducement</i> alarm is disabled; it does not act		
Enabled	upon any SCR inducement radii conditions from the ECO.		
	\mathbf{M} = The DSE module's SCR inducement alarm is enabled. The action the		
	the ECU.		
	The alarm action list is as follows, see section entitled Alarm Types for more		
	information:		
	Electrical Trip		
	Shutdown		
	Warning		
Arming	Select when the DSE module activates its SCR Inducement alarm.		
, , , , , , , , , , , , , , , , , , ,	Options are as follows, see the section 6 entitled <i>Alarm Arming</i> for more		
	information:		
	Always		
	From Safety On		
	From Starting		
	Loading Alarms Activation		
	Never:		
	When Stationary		
Activation Delay	The amount of time before the module activates the SCR Inducement alarm		
	after a receiving a SCR Inducement fault condition from the ECU.		

3.11.9.4 MESSAGE FAILURE

Allows adjustment of the CAN message failure rate for instrumentation parameters received from the ECU (ECM). This is to allow for spurious CAN data loss error message caused by longer than usual timeouts.

ECU CAN Message Timeouts			
Enabled			Timeout Multiplier
Engine Speed		3	0
Oil Pressure		3	0
Coolant Temperature		3	0
Other Messages		3]

Parameter	Description
Message	\Box = The message failure monitoring works on the default setting as specified by
Failure	the manufacturer.
	$\mathbf{\nabla}$ = When enabled, this option overrides the standard message timeout with a
	longer timeout to avoid spurious failures. Set the <i>Timeout Multiplier</i> to adjust the
	timeout value for the parameter by between three and ten times the standard
	value.

3.11.10 GAS ENGINE OPTIONS

Gas Engine Timers			
Choke Gas on Delay Ignition Off Delay	2s 2s 2s		

Parameter	Description
Choke Timer	Controls the amount of time that the Gas Choke output is active during the
	starting sequence.
Gas On Delay	Controls the amount of time between energising the Gas Ignition and energising
_	the Fuel output. Used in the starting sequence to purge old gas from the engine.
Ignition Off	Controls the amount of time between de-energising the Fuel output and de-
Delay	energising the Gas Ignition output. Used in the stopping sequence to purge
	unburnt gas from the engine before it is stopped.

3.11.11 CRANKING

Cranking settings are used to detect when the set fires during the starting sequence. As the set is cranked, the first parameter that passes its *crank disconnect* setting results in the cessation of the cranking signal.

Having more than one *crank disconnect* source allows for a much faster crank disconnect response leading to less wear on the engine and starter components and provides added safety in case one source is lost, by a blown or tripped fuse for example.

Parameter	Description
Crank	\Box = The DSE module does not use oil pressure to decide when to disengage the
Disconnect on	starter motor.
Oil Pressure	\blacksquare = The DSE module does uses oil pressure to decide when to disengage the
	starter motor in addition to the enabled methods
Check Oil	= The DSE module does not use oil pressure as an indication if the engine is
Pressure Prior	running. This is disabled for large engines that have an electrical oil pump which
to Starting	is used to maintain oil pressure even when the engine is stationary.
_	\blacksquare = The DSE module uses oil pressure as an indication if the engine is running.

Crank Disconnect

Crank Disconnect		
Generator Frequency	21.0 Hz	
Engine Speed	\$ 600 RPM	
Oil Pressure	2 Bar	
Delay	0.0s	0
Charge Alternator		
	🗘 6.0 V DC	
Generator Voltage		
	🗘 322 V PhP	h

Parameter	Description	
Generator	The DSE module disengages the starter motor when the generator frequency	
Frequency	rises above the configured level.	
Engine Speed	The DSE module disengages the starter motor when the engine speed rises	
	above the configured level.	
Oil Pressure	The DSE module disengages the starter motor when the engine oil pressure	
	rises above the configured level for longer than the configured Delay.	
Charge	= The DSE module does not use charge alternator voltage to decide when to	
Alternator	disengage the starter motor.	
	$\mathbf{\Sigma}$ = The DSE module disengages the starter motor when the charge alternator	
	voltage rises above the configured level.	
Generator	= The DSE module does not use generator voltage to decide when to	
Voltage	disengage the starter motor.	
	$\mathbf{\Sigma}$ = The DSE module disengages the starter motor when the generator voltage	
	rises above the configured level.	

Manual Crank

Manual Crank		
Hold Start Button To Crank		
Manual Crank Limit	30s	

Parameter	Description
Hold Start	= When in manual mode, pressing the start button momentarily instructs the
Button to Crank	generator to go through its cranking procedure.
	\blacksquare = Releasing the start button during a manual start also disconnects the crank.
	Manual Crank Limit is provided to protect the engine from being cranked too long
	in case of a start failure.

3.11.12 IDLE SETTING

Options			
Idle Running Idle Running Off	Os Os	0	

Options	Description
Idle Running	The amount of time that the engine is requested to run at idle speed upon starting. This is typically used to limit emissions at start-up.
Idle Running Off	The amount of time that the engine takes to run up to rated speed after removal of the command to run at idle speed. If this time is too short, the engine is stopped due to an <i>Underspeed</i> alarm. If the time is too long, <i>Underspeed</i> protection is disabled until the <i>Smoke Limit Time Off</i> time has expired.
Fast Loading From Idle	 = The DSE module waits for the <i>Idle Running Off</i> time to expire, then loads the generator. = During the <i>Idle Running Off</i> time if the <i>Loading Voltage</i> and <i>Loading Frequency</i> are reached, the module terminates the <i>Idle Running Off</i> and loads the generator.
3.11.13 SPEED SENSING

Options	
Disable ECM Speed Sensing	
Magnetic Pickup Fitted	Engine speed is read from the ECU (ECM)
Flywheel Teeth	‡ 190
Enable Multiple Engage Attempts	
Engage Attempts	2
Loss of Sensing Signal	Shutdown 👻
Disable under speed alarms if sensor fails	
Magnetic Pickup Open Circuit	Shutdown 🔻

Parameter	Description
Disable ECM	= An ECM is connected to the DSE module and being used for speed sensing.
Speed	\blacksquare = An ECM is connected to the DSE module, but another form of speed sensing
Sensing	fitted to the DSE module is being used.
Magnetic	
Pickup Fitted	ANOTE: For more detailed information on the Magnetic Pickup
	Specification, refer to DSE Publication: 057-3xx DSEG86xx Operator Manual.
	I = Magnetic pickup device is not connected to the DSE module.
	☑ = A low impedance magnetic pickup device is connected to the DSE module to
	measure engine speed.
Flywheel	Define the number of pulses which are counted by the speed sensing device in
Teeth	each engine revolution.
Enable	\Box = No engage attempt is given. If no speed sensing is detected during cranking,
Multiple	the Fail To Start alarm is active.
Engage	$\mathbf{\Sigma}$ = If no magnetic pickup pulses are detected during cranking, it is assumed that
Attempts	the starter has not engaged to turn the engine. The starter is withdrawn and re-
	energised for the configured number of Engage Attempts.
Loss of	If the speed sensing signal is lost during engine running (or not present during
Sensing	cranking when Multiple Engage Attempts is enabled), an alarm is generated:
Signal	Shutdown
	Warning
Disable Under	= Under speed alarms activate even if speed sensor has failed.
Speed Alarms	\blacksquare = Under speed alarms are disabled when the speed sensor fails.
If Sensor Fails	
Magnetic	If the magnetic pickup device is not detected, an alarm is generated:
Pickup Open	Shutdown
Circuit	Warning Always Latched

3.11.14 SPEED SETTINGS

<u>Under Speed</u>

Under Speed	
Alarm 📃	
Action	Shutdown 👻
Trip	\$ 1200 RPM
Pre-Alarm 📃	
Trip	1260 RPM
Return	1350 RPM
Activation Delay 0	

Parameter	Description
Under Speed Alarm	I = Under Speed alarm is disabled
	$\mathbf{\Sigma}$ = Under Speed gives an alarm in the event of the engine speed
	falling below the configured Under Speed Alarm Trip value for longer
	than the Activation Delay. The Underspeed Alarm Trip value is
	adjustable to suit user requirements.
Action	Select the type of alarm required from the list:
	Electrical Trip
	Shutdown
	For details of these, see the section 5 entitled <i>Alarm Types</i> for more
	information.
Pre-Alarm	I = Under Speed Pre-Alarm is disabled
	Image = Under Speed gives a Pre-Alarm in the event of the engine
	speed falling below the configured Under Speed Pre-Alarm Trip
	value for longer than the Activation Delay. Once the engine speed
	rises above the Under Speed Pre-Alarm Return the alarm is reset.
	The Under Speed Pre-Alarm Trip value is adjustable to suit user
	requirements.
Activation Delay	This is used to delay the Under Speed Alarm. Useful to prevent
	short term dips in voltage causing the generator to shut down

Over Speed

Over Speed		
Pre-Alarm		
Return	1620	RPM
Trip	1650	RPM
Alarm		
Trip	1 710	RPM
Activation Delay 0s		

Parameter	Description
Over Speed Pre-Alarm	= Alarm is disabled
	☑ = Over Speed gives a <i>Pre-Alarm</i> in the event of the engine speed
	rising above the configured Over Speed Pre-Alarm Trip value for
	longer than the Activation Delay. The Pre-Alarm is automatically
	reset when the engine speed falls below the configured <i>Return</i> level.
	The Over Speed Pre-Alarm Trip value is adjustable to suit user
	requirements.
Alarm	Over Speed gives a <i>Shutdown</i> alarm in the event of the engine
	speed rising above the configured Over Speed Alarm Trip value for
	longer than the Activation Delay. The Over Speed Alarm Trip value
	is adjustable to suit user requirements.
Activation Delay	This is used to delay the Over Speed Alarm. Useful to prevent short
	term dips in voltage causing the generator to shut down

<u>Run Away</u>

Run Away			
Trip	1800	RPM	0

Parameter	Description
Run Away IEEE C37.2 -81 Frequency Relay	A NOTE: Run Away setting is not available if a magnetic pick-up or an electronic engine is connected.
	\square = Alarm is disabled \blacksquare = In the event of the engine speed rising above the configured <i>Trip</i> value, the <i>Run Away Shutdown</i> alarm is immediately triggered. This is used to protect against engine damage due to uncontrolled speed increase, where the engine speed runs away.
Trip	Set the RPM level for the Run Away alarm.

Editing the Configuration

Overspeed Options

Overspeed Options	
Overspeed Overshoot %	\$ 10
Overshoot Delay	2s

Parameter	Description
Overspeed Overshoot %	To prevent spurious overspeed alarms at engine start up, the module includes configurable <i>Overspeed Overshoot</i> protection. This allows the engine speed to 'overshoot' the Overspeed setting during the starting process for a short time.
Overshoot Delay	
	Rather than 'inhibiting' the Overspeed alarms, the levels are
	temporarily raised by the Overspeed Overshoot % for the duration of
	the Overspeed Overshoot delay from starting.

3.11.15 PLANT BATTERY

Voltage Alarms

Voltage Alarm		
Under Voltage		
Pre-Alarm	10.0 V DC	
Return	10.5 V DC	
Delay	m]=	
Over Voltage 🗵		
Return	29.5 V DC	
Pre-Alarm	30.0 V DC]
Delay	im]-	

Parameter	Description
Plant Battery Under	= The alarm is disabled.
Voltage	$\mathbf{\Sigma}$ = The alarm activates when the battery voltage drops below the
IEEE C37.2 -27 DC	configured Pre-Alarm level for the configured Delay time. When the
Undervoltage Relay	battery voltage rises above the configured <i>Return</i> level, the alarm is de-
	activated.
Plant Battery Over	= The alarm is disabled.
Voltage	$\mathbf{\Sigma}$ = The alarm activates when the battery voltage rises above the
IEEE C37.2 -59 DC	configured Pre-Alarm level for the configured Delay time. When the
Overvoltage Relay	battery voltage drops below the configured Return level, the alarm is de-
	activated.

Charge Alternator Alarms

Charge Alternator Alarm				
Use Module for Charge Alternator				
Alarea				
Alarm	×.			
Trip		÷ 4.0	V DC	
Delay		5s		
Pre-Alarm				-
1 to / dam			-	-
Trip		÷ 6.0	V DC	
Delav		5s		
· · · · · · · · · · · · · · · · · · ·				

Parameter	Description
Use Module For Charge Alternator	A NOTE: The feature is only available when an electronic engine is selected.
	\Box = DSE module measures the charge alternator voltage. \blacksquare = Engine ECU (ECM) provides charge alternator voltage.
Charge Alternator	= The alarm is disabled.
Alarm	\blacksquare = The alarm activates when the charge alternator voltage falls below
	the configured <i>Trip</i> level for the configured <i>Delay</i> time.
Charge Alternator Pre-	= The alarm is disabled.
Alarm	$\mathbf{\Sigma}$ = The alarm activates when the charge alternator voltage falls below
	the configured Trip level for the configured Delay time.

3.11.16 INLET TEMPERATURE

Provides inlet temperature alarms when the module is used in conjunction with electronic (ECU) engines that support the reading of inlet temperature.

Inlet Temp	erature Alarms
Alarm	
Action	Shutdown 💌
Trip	\$ 95 ℃ 203 °F
Pre-Alarm	
Trip	\$ 85 °C 185 °F
Return	\$80 °C 176 °F

Parameter	Description
Inlet Temperature Alarm	A NOTE: The feature is only available when an electronic engine is selected.
	\Box = Disable the alarm \blacksquare = Inlet Temperature Alarm is activated when the Inlet Temperature sent from the ECU rise above the Trip level.
Action	Select the type of alarm required from the list: <i>Electrical Trip</i> <i>Shutdown</i> For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
Inlet Temperature Pre- Alarm	$\Box = \text{The alarm is disabled.}$ $\overline{\Box} = \text{Inlet Temperature Pre-Alarm is activated when the Inlet}$ Temperature sent from the ECU is above the configured Trip level. The Pre-Alarm is deactivated when the Inlet Temperature falls below the Return level.

3.11.17 ENGINE ICON DISPLAYS

This section is used with Electronic Engines, it allows to create or define a CAN Lamp icon and how to be displayed when the configured alarm or message is active, such as flashing the CAN icon rapidly or slowly. The first screen is enabled by default, and it cannot be disabled, the second and third screens are configurable to be enabled or disabled through this section to allow the user to create more CAN Icon Displays. The CAN icon instrument is activated based on a DTC message sent from the ECU or according to GenComm instrumentation conditions.

ONOTE: The maximum bitmap size allowed is 119 pixels wide by 41 pixels high.

3.11.17.1 **ICON INSTRUMENTATION**

<u>Displays</u>

Select the required Lamp Icon from the screen to configure or click on the 🛨 tab to create a new Lamp Icon.

Display tab	Description
tools	
+	Click on the Plus tab to create a new Lamp Icon within the selected screen.
8	Click on the delete tab to delete the selected Lamp Icon from the screen.
\odot	Click on the right or left tab to select the next Lamp Icon in the screen.
\mathbf{X}	Click to hide the instruments from the screens.
\checkmark	Click to show all the instruments in the screens.
*	This tool is for flashing demonstration. Click to flash all the instruments slowly.
*	This tool is for flashing demonstration. Click to flash all the instruments rapidly.
<i>6</i>	Click to import a saved Engine Icon Displays.
	Click to export the configured Engine Icon Displays.

Icon Bitmaps

Configure the Icon Bitmaps of the selected instrument from the screen, to show the Lamp Icon when its active or inactive

Click on 😫 to delete the	Indicates the selected Icon to show when t instrument is active, and the module is flas	he hing it on.
Off Select. On/Flash On Select.		🔞 Bitmap Help
Flash Off Select. Position X 2.77 Y 2.22 Dim	Click to select the Lamp Icon. The available icons are listed in the below table.	

Icon Bitmaps	Description
Flash On (On)	Select the icon to show when the instrument is active, and the module
	has flashed on the Engine Icons on the screen.
Flash Off	Select the icon to show when the instrument is active, and the module
	has flashed off the Engine Icons on the screen.
Off	Select the icon to show when the instrument is not active on the screen.
Position X, Y	Configure the instrument positions for X & Y coordinates on the screen.
Continued Overloof	

Continued Overleaf...

Lamp Icons	Display
\mathbb{S}	DEF On Large
<u>\$</u>	DEF On
<u>I</u> 3	DPF Active
- X	DPF Inhibit
STOP	DPF Stop
•	DPF Warning
-Ū-	ECU Red Alarm
1	ECU Yellow Alarm
3	HEST On
$\langle \mathbf{c} \rangle$	SCR Active Large
	SCR Active

Icon Instrumentation

Configure the Type of the Instrumentation to read from the DTC or from a GenComm register, and on what condition(s) the selected instrument to be On or flashing.

Icon Instrumentation DTC Type

Icon Instru	mentation	1	
Туре	DTC		•
On	DTC	Slow DTC	Fast DTC
*			

Icon Instrumentation	Description
On DTC	Configure the DTC code to activate the instrument when On DTC satisfied.
Slow DTC	Configure the DTC code to flash the instrument slowly when <i>Slow DTC</i> satisfied.
Fast DTC	Configure the DTC code to flash the instrument rapidly when <i>Fast DTC</i> satisfied.

Icon Instrumentation GenComm Type

Icon Instrumentation							
Туре	GenComm 👻						
Instrumentation	ECU (ECM) Shutdown						
On		Slow Flash	Fast Flash				
*							

Parameters detailed overleaf...

Icon Instrumentation	Description					
Instrumentation	Select the instrument to monitor. This may be a flag condition or an instrumentation value.					
Flag type of GenComm Icon Instrument	Select the required Condition to activate the Instrumentation Icon, or to Slow Flash, or to Fast Flash based on the options below: <i>Not Used</i> <i>When Inactive</i> <i>When Active</i>					
	On	Slow Flash		Fast Flash		
	*	*				
	Not Used When Inactive When Active					
Instrumentation type of GenComm Icon Instrument						
	On	Slow FI	ish	Fast Fla	sh	
	Condition Valu	e Condition	Value	Condition	Value	
	% < Kot Used> Less than (<)					

3.12 COMMUNICATIONS

The *Communications* page is subdivided into smaller sections. Select the required section with the mouse.

Communications
Communications Options
RS485 Ports
Ethernet Port
Notifications

3.12.1 COMMUNICATIONS OPTIONS

Provides a means of giving the controller an identity. This is used in the SCADA section to allow the operator to see the site name and engine identity that it is currently connected to.

Module Identification	Erec toxt entries to identify the
	Free text entries to identify the
Site Identity	engine. This text is displayed on
Genset Identity	the SCADA screen when the
	module is connected to the PC.

Parameter	Description
Site Identity	A free entry box to allow the user to give the DSE module a description of where the site is located. This text is not shown on the module's display and is only seen when
	performing remote communication. This aids the user in knowing where the generator is located.
Genset Identity	A free entry box to allow the user to give the DSE module a description of which generator it is connected to. This text is not shown on the module's display and is only seen when performing remote communication. This aids the user in knowing which generator on a specific site is being monitored.

3.12.2 RS485 PORTS

NOTE: When the *RS485 Port Usage* is configured to "*PLC Comms*", all other modules' *Port Usage* must be configured to "*GenComm*". This allows the module configured as "*PLC Comms*" to act as a master and read from the module(s) configured to "*GenComm*". For details on how to configure the *PLC Editor* to read via its RS485, refer to DSE Publication: 057-314 Advanced PLC Software Manual which is found on our website: www.deepseaelectronics.com

A NOTE: A maximum of 64 devices are allowed on each por	rt.
--	-----

DC 405 D 1 4		
RS485 Port 1		
Slave ID Baud Rate	÷ 10 115200	•
Port Usage	Gencomm	•
Master inactivity timeout	5s	
Inter-frame delay	0 ms]

Parameter	Description
Slave ID	Select the Slave ID of the DSE module's RS485 port. Every device on
	the RS485 link must have a unique ID.
Baud Rate	Select the Baud Rate (speed of communication) of the DSE module's
	RS485 port. Every device on the RS485 link must have the same Baud
	Rate.
	1200
	2400
	4800
	9600
	14400
	19200
	28800
	38400
	57600
	115200
Port Usage	
	AANOTE: In a system for a <i>PLC Comms</i> application, only one
	DSE module must be configured to act as the PLC master.
	For further details and instructions on using the PLC Comms,
	refer to DSE Publication: 057-314 Advanced PLC Software Manual
	Which is found on our website: <u>www.deepseaelectronics.com</u>
	Select the RS485 Port 1 or Modbus Engine through application
	options
	GenComm: Modbus RTU RS485 communication
	PLC Comms: The RS485 Port 1 is used to read the other controllers'
	registers over the RS485 link which are defined in the PLC Editor.

Continued on next page......

Parameter	Description
Master Inactivity Timeout	Set the time delay between a Modbus RTU request and the receipt of a
	The module monitors by default the USB port for communications. When activity is detected on the RS485 port, the module monitors the port for further data. If no data activity is detected on the port for the duration of the <i>Master Inactivity Timer</i> , it reverts to looking at the USB port. This needs to be set longer than the time between Modbus polls from the master.
Inter-frame Delay	Set the time delay between the DSE module receiving a Modbus RTU request and the DSE module's response.

3.12.3 ETHERNET

ONOTE: Consult the network administrator of the host network before changing these settings. Incorrect settings cause network errors in the existing local area network. These settings must only be changed by qualified network administrators. When the Ethernet settings have been changed the module must be re booted to apply the new settings.

Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol
Obtain IP Address Automatically

Parameter	Description
Obtain IP Address	□ = The Dynamic Host Configuration Protocol (DHCP) is disable and the
Automatically	unit has a fixed IP address as configured in the <i>IP Address</i> section.
	☑ = The Dynamic Host Configuration Protocol (DHCP) is enabled, and
	the unit automatically attains an IP address from the network it is
	connected to if it has DHCP enabled.

<u>Names</u>

Names	
Domain Name	DSE Module
Host Name	Company
Vendor Name	Deep Sea Electronics

Parameter	Description
Domain Name	The hostname of the device which is used for DHCP requests and
	acknowledgements. Consult the network IT manager for suitable
	naming
Host Name	Additional description string for DHCP
Vendor Name	Additional description string for DHCP

IP Address

IP Addi	resses						
IP ac	dress	192		168	.	1	100
Subr	net Mask	255		255		255	0
Gate	way Address	0].	0		0	0
DNS	Address	0		0		0	0
Pref	erred Connection Address	0].	0		0	0

Parameter	Description	
IP Address	The static IP address of the module.	
Subnet Mask	The subnet mask is to determine whether the module is on the	
	local subnet or on a remote network.	
Gateway Address	IP address of the internet router that module is connected to.	
DNS Address	IP address of the Domain Name Service (DNS). Usually this is the	
	same as the module's IP address.	
Preferred Connection	The module allows up to five Modbus masters to connect to it. The	
Address	Preferred Connection Address enables the unit to reserve one of	
	the five connections for a specific IP address, such as for a remote	
	display module to ensure it always connects.	

<u>Modbus</u>

Modbus
Modbus Port Number \$502

Parameter	Description
Modbus Port Number	The port number which the module serves Modbus traffic on.

3.12.3.1 FIREWALL CONFIGURATION FOR INTERNET ACCESS

As modem/routers differ enormously in their configuration, it is not possible for DSE to give a complete guide to their use with the DSE module. However, it is possible to give a description of the requirements in generic terms. For details of how to achieve the connection to your modem/router you are referred to the supplier of your modem/router equipment.

The DSE module makes its data available to a configurable TCP port number. You must configure your modem/router to allow inbound traffic on this port. For more information you are referred to your WAN interface device (modem/router) manufacturer.

3.12.3.2 INCOMING TRAFFIC (VIRTUAL SERVER)

Network Address and Port Translation (NAPT) allows a single device, such as the modem/router gateway, to act as an agent between the Internet (or "public external network") and a local (or "internal private") network. This means that only a single, unique IP address is required to represent an entire group of computers.

For our DSE module application, this means that the WAN IP address of the modem/router is the IP address we need to access the site from an external (internet) location.

When requests reach the modem/router, we want this passed to a 'virtual server' for handling, in our case this is the DSE module.

Example:

Result: Traffic arriving from the WAN (internet) on Port 1003 is automatically sent to IP address 192.168.1.45 on the LAN (DSE module) for handling.

3.12.4 NOTIFICATIONS

The *Notifications* page is subdivided into smaller sections. Select the required section with the mouse.

Notifications	
<u>SNMP</u>	
Notifications	

3.12.4.1 SNMP

ANOTE: The SNMP V2c MIB file for the module is available to download from the DSE website: <u>www.deepseaelectronics.com</u>.

The module supports SNMP v2c with GetRequest, SetRequest, GetNextRequest, GetBulkRequest and Response. The module also allows communication up to two different SNMP managers at the same time on different IP addresses.

A fixed MIB file is available for the module for use by external SNMP managers. The MIB file is a file used by the SNMP manager to give context to the information held within the module.

SNMP Settings	
Enable 🗸	
Device Name	DSE Module
Manager 1 Address	192.168.1.99
Manager 2 Address	
Manager Port	÷ 161
Notification Port	÷ 162
D 10 101	
Read Community String	public
Write Community String	private

Parameter	Description
Enable	= The SNMP function is disabled
	\mathbf{Z} = The SNMP function is enabled. The module communicates with
	the SNMP manager using its ethernet port.
Device Name	The name of the module which is attainable by SNMP requests using
	sysName OID contained within the standard RFC1213 MIB file.
Manager 1 Address	The static IP address of the first SNMP manager.
Manager 2 Address	The static IP address of the second SNMP manager.
Manager Port	The port number which the module serves SNMP GET, GET Next,
	Get Bulk, Get Subtree, Walk and SET messages.
Notification Port	The port number which the module sends SNMP TRAP messages
	via.
Read Community String	The SNMP Read Community String. (Factory setting public)
Write Community String	The SNMP Write Community String. (Factory setting private)

Parameter descriptions are continued overleaf...

3.12.4.2 NOTIFICATIONS

This page allows the user to select the types of events which are sent to the SNMP managers as SNMP TRAP messages.

Notifications	
	SNMP Trap
Named Alarms	
Unnamed Alarms	
Mode Change	
Power Up	
Engine Starts	
Engine Stops	
Mains Fail	
Mains Return	
ECU Lamps	
Fuel Level Monitoring	
Application Switched Multi Set	
Application Switched Single Set	
Generator Breaker Opened	
Generator Breaker Closed	

Parameter	Description
Named Alarms	I = No SNMP TRAPs are sent when a Named Alarm activates.
	\mathbf{V} = An SNMP TRAP is sent when a Named Alarm activates. A Named Alarm
	is a protection with a pre-set name, e.g., Generator Over Voltage.
Unnamed Alarms	I = No SNMP TRAPs are sent when an Unnamed Alarm activates.
	☑ = An SNMP TRAP is sent when an Unnamed Alarm activates. An Unnamed
	Alarm is a protection with a user configured name, e.g., a digital input
	configured for User Configured.
Mode Change	I = No SNMP TRAPs are sent when the module changes operating mode.
	☑ = An SNMP TRAP is sent to indicate the operating mode has changed and
	what is has changed to.
Power Up	I = No SNMP TRAPs are sent when the module powers up.
-	$\mathbf{\nabla}$ = An SNMP TRAP is sent when the module powers up.
Engine Starts	I = No SNMP TRAPs are sent when the engine starts.
	$\mathbf{\overline{M}}$ = An SNMP TRAP is sent when the engine starts.
Engine Stops	I = No SNMP TRAPs are sent when the engine stops.
	$\mathbf{\overline{M}}$ = An SNMP TRAP is sent when the engine stops.
Mains Fail	I = No SNMP TRAPs are sent when the mains fails.
	$\mathbf{\overline{M}}$ = An SNMP TRAP is sent when the mains fails.
Mains Return	= No SNMP TRAPs are sent when the mains returns.
	$\mathbf{\mathbf{i}}$ = An SNMP TRAP is sent when the mains returns.
ECU Lamps	I = No SNMP TRAPs are sent when the ECU Lamps are active.
	$\mathbf{\overline{M}}$ = An SNMP TRAP is sent when the ECU Lamps are active
Fuel Level	I = No SNMP TRAPs are sent when a Fuel Level Monitoring event is logged
Monitoring	within the module's event log.
	Image: An SNMP TRAP is sent when a Fuel Level Monitoring event is logged
	within the module's event log.
Application Switched	I = No SNMP TRAPs are sent when the Application Switched is Multi Set.
(Multi Set)	$\mathbf{\overline{M}}$ = An SNMP TRAP is sent when the Application Switched is Multi Set
Application Switched	\Box = No SNMP TRAPs are sent when the Application Switched is Single Set.
(Single Set)	$\mathbf{\Sigma}$ = An SNMP TRAP is sent when the Application Switched is Single Set
Generator Breaker	\Box = No SNMP TRAPs are sent when the Generator Breaker is Opened.
Opened	$\mathbf{\Sigma}$ = An SNMP TRAP is sent when the Generator Breaker is Opened
Generator Breaker	\Box = No SNMP TRAPs are sent when the Generator Breaker is Closed.
Closed	$\mathbf{\Sigma}$ = An SNMP TRAP is sent when the Application Switched is Closed

3.13 SCHEDULER

The section is subdivided into smaller sections.

Scheduler		
	Scheduler Options	
	Bank 1	
	Bank 2	

3.13.1 SCHEDULER OPTIONS

Scheduler Options	
Scheduler Options	
Enable Excercise Scheduler	

Function	Description
Enable Exercise	= The scheduler is disabled.
Scheduler	\blacksquare = The scheduler is enabled, Bank 1 and Bank 2 become editable.

3.13.2 BANK 1 / BANK 2

Each Bank of the Exercise Scheduler is used to give up to 8 scheduled runs per bank, 16 in total. This run schedule is configurable to repeat every 7 days (weekly) or every 28 days (monthly). The run is *On Load*, *Off Load* or *Auto Start Inhibit*.

Each scheduler bank configured differently either to weekly or monthly based exercises.

ank i Schedul	e Peric	d Monthly	•					
Week	e r ene	Day		Run Mode		Start Time	Duration	
First	-	Monday	-	Off Load	•	÷ 00:00	00:00	Cle
First	-	Monday	-	Off Load	-	- 00:00	00:00	Cle
First	-	Monday	-	Off Load	-	÷ 00:00	÷ 00:00	Cle
First	-	Monday	-	Off Load	-	00:00	00:00	Cle
First	-	Monday	-	Off Load	-	00:00	00:00	Cle
First	-	Monday	-	Off Load	-	00:00	00:00	Cle
First	-	Monday	-	Off Load	-	00:00	00:00	Cle
First	-	Monday	-	Off Load	-	÷ 00:00	00:00	Cle

Function	Description
Schedule Period	Determines the repeat interval for the scheduled run. Options available
	are:
	Weekly: The schedule events occur every week.
	Monthly: The schedule events occur every month on the week selected.
Week	Specifies the week of the month, on which the scheduled run takes place
Day	Specifies the day of week, on which the scheduled run takes place
Run Mode	Determines the loading state mode of the generator when running on
	schedule
	Auto Start Inhibit: The generator is prevented from running in Auto
	mode.
	Island (Single Set): The module runs the generator in island mode,
	generator breaker closed, and mains breaker opened.
	<i>Off Load:</i> The module runs the generator on schedule with the load switch open
	On I and (Multi Set): The module runs the generator on schedule and
	closes the load switch
	Parallel (Single Set): In Generator Mode, the module starts the generator
	and closes the generator breaker to provide the configured amount of
	power. In <i>Mains Mode</i> , the module starts the generator and closes the
	generator breaker for peak lopping.
Start Time	Determines at what time of day the scheduled run starts
Duration	Determines the time duration in hours for the scheduled run
Clear	Resets the values for the Day, Start Time, and Duration to defaults

NOTE: If the module application is in Single Set Mode and is switched to Multi Set mode then the Run Mode will default to On Load (Multi Set). If the module application is switched from Multi Set Mode to Single Set Mode then the Run Mode will default to Parallel Mode (Single Set).

 \frown

3.14 MAINTENANCE ALARM

Maintenance Alarm 1		
Enable Description Action Engine Run Hours Enable Alarm On Due Date Maintenance Interval	Maintenance Alarm 1 Warning	 There are three ways to reset the maintenance alarm: 1) Activate a digital input configured to "Maintenance Reset Alarm". 2) Use the SCADA Maintenance Maintenance Alarm section of this PC Software.
Maintenance Alarms 1	<u>to 3</u>	3) Through the Front Panel Editor of the module
Function	Description	
Enable	 □ = The maintenance a ☑ = The maintenance a the engine hours increase date increase more that 	larm is disabled. larm is activated with the configured <i>Action</i> when se more than the <i>Engine Run Hours</i> or when the othe <i>Maintenance Interval</i> settings

	date increase more than the <i>Maintenance Interval</i> settings.		
Description	The text that is displayed on the module's LCD when the maintenance alarm activates.		
Action	A NOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.		
	Select the type of alarm required from the list: <i>Shutdown</i> <i>Warning</i>		
Engine Run Hours	The value the engine hours must increase by to trigger the maintenance alarm.		
Enable Alarm on Due Date	 The maintenance alarm only activates on the engine hours increasing The maintenance alarm activates on the engine hours increasing or the date increasing, whichever occurs first. 		
Maintenance Interval	The value the date must increase by to trigger the maintenance alarm.		

3.15 CONFIGURABLE CAN INSTRUMENTATION

NOTE: For further details and instructions on using *Configurable CAN*, refer to DSE Publication: 056-118 PLC Configurable CAN which is found on our website: <u>www.deepseaelectronics.com</u>

The *Configurable CAN Instrumentation* section is subdivided into smaller sections. Select the required section with the mouse.

 Configurable CAN Instrumentation

 <u>Received Instrumentation (1-10)</u>

 <u>Received Instrumentation (11-30)</u>

 <u>Transmitted Instrumentation</u>

 Export Configurable CAN

 Import Configurable CAN

3.15.1 RECEIVED INTRUMENTATION (1-30)

This feature allows for up to thirty custom engine CAN instrumentation items to be decoded from CAN messages on the connected ECU port.

Ins	trumentation (Configuration		
	Enabled	On Module	Description	
1		\checkmark	Configurable CAN 1	Details
2	V		Configurable CAN 2	Details
3	V		Configurable CAN 3	Details
4	\checkmark		Configurable CAN 4	Details
5	V		Configurable CAN 5	Details
6	V		Configurable CAN 6	Details
7	\checkmark		Configurable CAN 7	Details
8	V		Configurable CAN 8	Details
9	V		Configurable CAN 9	Details
1	0		Configurable CAN 10	Details

Parameter	Description
Enabled	A NOTE: The CAN instrumentation must already be available on the CAN bus. There is no request for a non-standard instrumentation.
	 □ = The CAN instrumentation is disabled. ☑ = The CAN instrumentation is enabled. Reading depends upon the message availability on the bus.
On Module	A NOTE: The CAN instrumentation is always available on the SCADA, Data Logging, PLC if at least one CAN instrumentation is enabled. The CAN instrumentation is shown on the DSE module's display when the On Module is enabled.
	\Box = The CAN instrumentation is not displayed on the DSE module. \blacksquare = The CAN instrumentation is displayed on the DSE module.
Description	Provide a description for the CAN instrumentation. This description is only shown in the SCADA.
Details	Click on Details to set the Message Decoding CAN options.

3.15.1.1 DETAILS

Message Identification

Message Type 29 Bit 🔻			
Message ID 🗘 0	(hex)	🔶 0x0	
Enabled 📃			
Timeout 5s			

Parameter	Description	
Message Type	Select the required message type:	
	11 Bit: message identifier for standard CAN	
	29 Bit: message identifier for extended CAN	
Message ID	lessage ID CAN message ID	
Enabled	= Timeout is disabled	
	✓ = Timeout is enabled	
Timeout It indicates how often the messages are expected to be seen on the CAN b		
	no new instrumentation is seen beyond the timeout period, the calculated	
	instrumentation value changes to a 'bad data' sentinel value.	

Data Structure

Data Structure			
Offset Length (Bits) Signed Value	Byte 1	Bit 🗘 0	

Parameter	Description
Offset Byte	Set the start position Byte
Offset Bit	Set the start position Bit
Length (Bits)	Data length 1-32 bits
Signed Value	I = Unsigned value
_	☑ = Signed value

<u>Display</u>

ANOTE: If the received CAN instrument is outside the configured raw values, the module displays sentinel value.

Display		
Decimal Places)	
Suffix		
Smallest Raw Value	÷ 0	Maps To 🌻 0
Largest Raw Value	÷1	Maps To 🌻 100

Parameter	Description
Decimal	Display the decimal point. 0 represents 0 scaling factor, 1 represents 0.1 scaling
Places	factor, -1 represents 10 multiplier.
Suffix	Unit display (example: m ³ /hr)
Smallest Raw	The smallest data sent over the CAN bus before the transformations (decimal
Value places).	
Maps To	The output format after all transformations including decimal point shift) as to be shown on the module screen, or SCADA, in data log file, etc.
Largest Raw	The largest data sent over the CAN bus before the transformations (decimal
Value	places).
Maps To	The output format after all transformations including decimal point shift) as to be
	shown on the module screen, or SCADA, in data log file, etc.

<u>Test</u>

Test			
Raw Value	÷ 0		
Displayed \	/alue 0		

Parameter	Description		
Test Raw Value	A NOTE: The Test Raw Value is not saved in the configuration, this is only to check the displayed value.		
	This is a test case to check the representation of the <i>Raw Value</i> when they are complicated. <i>Test Raw Value</i> is the value read from the CAN bus before the transformation		
Displayed	The Test Raw Value's represented value as to be shown on the DSE module's		
Value	screen, or in the Scada.		

3.15.2 TRANSMITTED INSTRUMENTATION

The module allows transmitting up to ten instruments over the CANbus on the ECU port by specifying the source address (message ID) of the selected Instrument.

Transmitted Instrumentation					
Instrumentation Configuration					
	Enabled	Source			
1	\checkmark	Gen Volts L-L Average 🔻	Details		
2	\checkmark	Gen Volts L-N Average 🔻	Details		
3		Generator Frequency 💌	Details		
4		Generator Total Power 💌	Details		
5		Generator Total VAr 💌	Details		
6		Mains Volts L-L Average 💌	Details		
7		Mains Volts L-N Average 💌	Details		
8	V	Mains Frequency 💌	Details		
9	v	Mains Total Power 💌	Details		
10		Mains Total VAr 💌	Details		

Parameter	Description
Enabled	= The Transmit CAN instrumentation is disabled.
	\blacksquare = The Transmit CAN instrumentation is enabled.
Source	Select the instrument to be created over the CAN.
Details	Click on Details to set the Message Encoding CAN options.

3.15.2.1 DETAILS

Message Identification

Message Identi	fication	
Message Type	11 Bit 💌	
Message ID	÷ 0	(hex) 🗘 0x0
Transmit Rate	100ms	0

Parameter	Description
Message Type	Select the required message type to transmit:
	11 Bit: message identifier for standard CAN
	29 Bit: message identifier for extended CAN
Message ID	CAN message ID
Transmit Rate	The rate at which the CAN Instrument is transmitted over the CANbus.

Data Structure

Data Structure			
Offset Length (Bits) Signed Value	Byte 🗘 1	Bit 🗘 0	

Parameter	Description
Offset Byte	Set the start position Byte
Offset Bit	Set the start position Bit
Length (Bits)	Data length 1-32 bits
Signed Value	= Transmit unsigned value
	☑ = Transmit signed value

<u>Mapping</u>

Mapping			
- 0	Maps To	÷ 0	
- 100	Maps To	÷ 1	
	0	0 Maps To 100 Maps To	

Parameter	Description
Smallest	The smallest instrument value before being sent over the CAN bus.
Source Value	
Maps To	The transmitted format for the Smallest Source Value.
Largest Source	The largest instrument value before being sent over the CAN bus.
Value	
Maps To	The transmitted format for the Largest Source Value.

<u>Test</u>

Test		
Source Value	÷ 0	
Mapped Value	0	

Parameter	Description
Source Value	A NOTE: The Source Value is not transmitted over the CANbus, this is only to check the encoded value.
	This is a test case to check the representation of the <i>Source Value</i> when they are complicated. <i>Source Value</i> is the instrument value before being encoded.
Mapped Value	The Mapped Value represents the transmitted Source value.

3.15.3 EXPORT / IMPORT CONFIGURABLE CAN

This feature is used to import the *Configurable CAN Instrumentation* settings into another DSE module.

Parameter	Description
Export	This allows the configuration settings of all Configurable CAN Instrumentation
	(Received & Transmitted) into one XML file.
Import	This allows to import an existing configuration setting of all Configurable CAN
	Instrumentation saved in XML format.

3.16 ALTERNATIVE CONFIGURATIONS

An Alternative Configurations are provided to allow the system designer to cater for different AC requirements utilising the same generator system. Typically, this feature is used by Rental Set Manufacturers where the set is capable of being operated at (for instance) 120 V 50 Hz and 240V 50 Hz using a selector switch.

The Alternative Configuration is selected using either:

- Configuration Suite Software (Selection for 'Default Configuration')
- Module Front Panel Editor
- Via external signal to the module input configured to "Alternative Configuration" select.
- Auto Voltage Sensing (Multi Set) selects the relevant alternative during generator starting (if configured)

Alternative Configurations

 Alternative Configuration Options

 Configuration 1

 Configuration 2

 Configuration 3

 Configuration 4

 Configuration 5

3.16.1 ALTERNATIVE CONFIGURATION OPTIONS

Parameter	Description
Default Configuration	Select the 'default' configuration that is used when there is no
	instruction to use an 'alternative configuration'.

3.16.2 ALTERNATIVE CONFIGURATION 1 TO 5

The Alternative Configurations Editor allows for editing of the parameters that are to be changed when an Alternative Configuration is selected.

3.16.2.1 CONFIGURATION OPTIONS

Enable Alternative Configuration

Enable Configuration	
Enable Configuration	

Parameter	Description
Enable	I = Alternative Configuration is disabled.
Configuration	$\mathbf{\Sigma}$ = Alternative Configuration is enabled. The configuration is enabled by changing the <i>Default Configuration</i> , activating a digital input or through the module's <i>Front Panel Editor</i> .

3.16.2.2 GENERATOR / ENGINE /BUS / MAINS / ENGINE

Alternative configuration options contain a subset of the main configuration. The adjustable parameters are not discussed here as they are identical to the main configuration options:

Alternative Configurations

Engine

Engine Protection Oil Pressure

- Coolant Temperature
- Fuel Level
 Fuel Use and Efficiency
 DEF Level
 Engine Options
 ECU (ECM) Options
- ECU (ECM) Alarms
 Gas Engine Options
 Cranking
 Idle Setting
 Speed Sensing
 Speed Settings
 Plant Battery
 Inlet Temperature
 Engine Icon Displays

3.17 EXPANSION

NOTE: In the event of a comms failure to an expansion module then the controller will no longer react. If a digital input is critical then the alarm on the expansion module should be set to *Electrical Trip* or *Shutdown*. If the link is lost to an expansion unit then it behaves as if it is powered down.

The *Expansion* page is subdivided into smaller sections. Select the required section with the mouse.

Expansion
2130 Input Modules
2131 Input Modules
2133 Input Modules
2152 Output Modules
2157 Relay Modules
2548 Annunciator Modules
Battery Chargers

See overleaf for description of the different expansion modules.

3.17.1 DSE2130 INPUT MODULES

Select the DSENet ID of the input expansion to be configured. The ID of the expansion module is set by rotary decimal switch accessible under the removable cover of the device.

The following options are then shown:

2130 Expansion Enable

Parameter	Description
Expansion Enabled	\Box = The expansion module with the selected ID is not enabled.
	\square = The expansion module with the selected ID is enabled. If the expansion module is not connected / detected by the module, the module generates an <i>Exp. Unit Failure</i> alarm with the configured <i>Link Lost Alarm Action</i> severity.

2130 Expansion Inputs

The *Expansion Unit* page is then subdivided into smaller sections. Select the required section with the mouse.

2130 Expansion Inputs
Analogue Input Configuration
Analogue Inputs
Digital Inputs

3.17.1.1 ANALOGUE INPUT CONFIGURATION

Input Configuration		
Analogue Input E	Flexible Analogue	+
Analogue Input F	Not Used	Ŧ
Analogue Input G	Digital Input	Ŧ
Analogue Input H	Flexible Analogue	Ŧ

Input Configuration

Parameter	Description
Analogue Input E to H	Select what the analogue input is to be used for:
	Not Used: The analogue input is disabled
	Digital Input: Configured on the 2130/Digital Inputs pages
	Flexible Analogue: Configured on the 2130/Analogue Inputs pages

3.17.1.2 ANALOGUE INPUTS

NOTE: An analogue input is only configurable as a flexible sensor if it has been configured as Flexible Analogue, refer to section 3.4.1 entitled *Analogue Input Configuration* in this document for further details.

Sensor Description

Sensor Description		
Sensor Name	2130 ID0 Flexible Sensor E	

Parameter	Description
Sensor Name	Enter the Sensor Name, this text is shown on the module display when viewing
	the instrument.

Input Type

Input Type		
VDO Ohm range (10-180)	▼ Edit	

Parameter	Description
Input Type	Select the sensor type and curve from a pre-defined list or create a user- defined curve.
	Available sensor types: Resistive: for sensors with maximum range of 0 Ω to 3 k Ω
	Available parameters to be measured: Pressure: The input is configured as a pressure sensor Percentage: The input is configured as a percentage sensor Temperature: The input is configured as a temperature sensor

Sensor Alarms

Sensor Alarms		
Alarm Arming	Always	
Low Alarm Enable	V	
Action	Shutdown	
Low Alarm	25 %	
Low Pre-alarm Enable	V	
Low Pre-alarm Trip	2 30 %	
Low Pre-alarm Return	35 %	
Low Alarm String	2130 ID0 Flexible Sensor E Low	
High Pre-alarm Enable	V	
High Pre-alarm Return	n 🗘 85 %	
High Pre-alarm Trip	\$ 90 %	
High Alarm Enable	V	
Action	Shutdown 👻	
High Alarm	\$ 95 %	
High Alarm String	2130 ID0 Flexible Sensor E High	

Parameter	Description
Alarm Arming	A NOTE: For details of these, see the section 6 entitled <i>Alarm Arming</i> for more information.
	Select when the alarm generated by the analogue input becomes active: Always From Safety On From Starting
Low Alarm	= The Alarm is disabled.
Enable	☑ = The Low Alarm activates when the measured quantity drops below the
	Low Alarm setting.
Low Alarm Action	A NOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
	Select the type of alarm required from the list: <i>Electrical Trip</i> <i>Shutdown</i>
Low Pre-Alarm	= The Pre-Alarm is disabled.
Enable	\mathbf{M} = The Low Pre-Alarm is active when the measured quantity drops below the
	Low Pre-Alarm Trip setting. The Low Pre-Alarm is automatically reset when
	the measured quantity rises above the configured Low Pre-Alarm Return level.
Low Alarm String	The text that is displayed on the module's LCD when the Low Alarm or Low
	Pre-Alarm activates.

Parameter descriptions are continued overleaf...

Parameter	Description
High Pre-Alarm	= The Pre-Alarm is disabled.
Enable	\square = The High Pre-Alarm is active when the measured quantity rises above the
	High Pre-Alarm Trip setting. The High Pre-Alarm is automatically reset when
	the measured quantity falls below the configured <i>High Pre-Alarm Return</i> level.
High Alarm	= The Alarm is disabled.
Enable	$\mathbf{\Sigma}$ = The High Alarm is active when the measured quantity rises above the
	High Alarm setting.
High Alarm Action	
	A NOTE: For details of these, see the section 5 entitled Alarm Types
	for more information.
	Select the type of alarm required from the list:
	Electrical Trip
	Shutdown
High Alarm String	The text that is displayed on the module's LCD when the <i>High Alarm</i> or <i>High</i>

3.17.1.3 DIGITAL INPUTS

The *Digital Inputs* section is subdivided into smaller sections. Select the required section with the mouse.

Digital Inputs
<u>Digital Inputs A - D</u>
Analogue Inputs E - H
3.17.1.3.1 DIGITAL INPUTS

Digital I	nputs	A - D				\frown	
Digital Inp	out A					As this example shows a predefined	
Function Polarity Action Arming LCD Disp	User Con Close to Warning Always	Activate	v	C al Input A	\bigcirc	function, these parameters are greyed out as they are not applicable.)
Activatior Digital Inp	n Delay out B	Os	J				
Function	User Co	nfigured	-				
Polarity	Close to	Activate	•				
Action	Warning		•				
Arming	Always		•				
LCD Disp	olay	2130 ID0) Digit	al Input B			
Activation	n Delay	0s					

Parameter	Description
Function	Select the input function to activate when the relevant terminal is energised.
	See section entitled Input Functions for details of all available functions
Polarity	Select the digital input polarity:
	Close to Activate: the input function is activated when the relevant terminal is
	connected.
	Open to Activate: the input function is activated when the relevant terminal is
	disconnected.
Action	ANOTE: For details of these and the coefficien E antitled Alarm Types for
	MANOTE: For details of these, see the section 5 entitled Alarm Types for more information
	Select the type of clorm required from the list:
	Electrical Trip
	Indication
	Shutdown
	Warning
Arming	
5	ONOTE: For details of these, see the section 6 entitled Alarm Arming
	for more information.
	Select when the input becomes active:
	Active from Mains Parallel
	Always
	From Safety On
	From Starting
	Never
LCD Display	The text that is displayed on the module's LCD when the input activates and
	generates an alarm.
Activation Delay	This is used to give a delay on acceptance of the input. Useful for liquid level
	switches or to mask short term operations of the external switch device.

3.17.1.3.2 ANALOGUE INPUTS

ANOTE: An analogue input is only configurable as a digital input if it has been configured as Digital Input, refer to section 3.4.1 entitled *Analogue Input Configuration* in this document for further details.

Analogue In	puts E - H		
Analogue Input	E (Digital)		
Function	User Configured	-	
Polarity	Close to Activate	•	
Action	Warning	•	
Arming	Always	•	
LCD Display	2130 ID0 Analogue E (Digit	al)	
Activation Delay	0s		
Analogue Input	F (Digital)		
The	Analogue Input is not co	onfigured as a D	igital Input

To reconfigure, use the 'Analogue Input Configuration' page

Parameter	Description
Function	Select the input function to activate when the relevant terminal is energised.
	See section entitled Input Functions for details of all available functions
Polarity	Select the digital input polarity:
	Close to Activate: the input function is activated when the relevant terminal is
	connected.
	Open to Activate: the input function is activated when the relevant terminal is
	disconnected.
Action	
	A NOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> for
	more information.
	Select the type of alarm required from the list:
	Electrical Trip
	Indication
	Shutdown
	Warning
Arming	
	ANOTE: For details of these, see the section 6 entitled <i>Alarm Arming</i>
	for more information.
	Select when the input becomes active:
	Active from Mains Parallel
	Always
	From Safety On
	From Starting
	Never
LCD Display	The text that is displayed on the module's LCD when the input activates and
	generates an alarm.
Activation Delay	This is used to give a delay on acceptance of the input. Useful for liquid level
	switches or to mask short term operations of the external switch device.

3.17.2 DSE2131 INPUT MODULES

Select the DSENet ID of the input expansion to be configured. The ID of the expansion module is set by rotary decimal switch accessible under the removable cover of the device.

The following options are then shown:

2131 Expansion Enable

2131 Expansion Enable																											
Expansion Enabled																											
Link Lost Alarm Action	Shutdown	•	-																								

Parameter	Description
Expansion Enabled	\Box = The expansion module with the selected ID is not enabled.
	\blacksquare = The expansion module with the selected ID is enabled. If the
	expansion module is not connected / detected by the module, the
	module generates an Exp. Unit Failure alarm with the configured Link
	Lost Alarm Action severity.
Link Lost Alarm Action	Select the type of alarm required from the list:
	Electrical Trip:
	Shutdown:
	Warning:

2131 Expansion Inputs

The *Expansion Unit* page is then subdivided into smaller sections. Select the required section with the mouse.

3.17.2.1 ANALOGUE INPUT CONFIGURATION

Î	nput Configuration		
	Analogue Input A	Flexible Analogue	•
	Analogue Input B	Flexible Analogue	-
	Analogue Input C	Not Used	-
	Analogue Input D	Flexible Analogue	-
	Analogue Input E	Digital Input	-
	Analogue Input F	Digital Input	+
	Analogue Input G	Digital Input	+
	Analogue Input H	Flexible Analogue	-
	Analogue Input I	Digital Input	-
	Analogue Input J	Not Used	-

Input Configuration

Parameter	Description
Analogue Input A to J Select what the analogue input is to be used for:	
	Not Used: The analogue input is disabled
	Digital Input: Configured on the 2131/Digital Inputs pages
	Flexible Analogue: Configured on the 2131/Analogue Inputs pages

3.17.2.2 ANALOGUE INPUTS

NOTE: An analogue input is only configurable as a flexible sensor if it has been configured as Flexible Analogue, refer to section 3.4.1 entitled *Analogue Input Configuration* in this document for further details.

Sensor Description

Sensor Description	
Sensor Name	2131 ID0 Flexible Sensor A

Parameter	Description
Sensor Name	Enter the Sensor Name, this text is shown on the module display when viewing
	the instrument.

Input Type

Input Type			
VDO Ohm range (10-180)	-	Edit	

Parameter	Description
Input Type	Select the sensor type and curve from a pre-defined list or create a user- defined curve.
	Available sensor types: <i>Current:</i> for sensors with maximum range of 0 mA to 20 mA <i>Resistive:</i> for sensors with maximum range of 0 Ω to 1920 Ω <i>Voltage:</i> for sensors with maximum range of 0 V to 10 V
	Available parameters to be measured: Pressure: The input is configured as a pressure sensor Percentage: The input is configured as a percentage sensor Temperature: The input is configured as a temperature sensor

Sensor Alarms

Sensor Alarms	
Alarm Arming	Always
Low Alarm Enable	V
Action	Shutdown 👻
Low Alarm	25 %
Low Pre-alarm Enable	V
Low Pre-alarm Trip	÷ 30 % —
Low Pre-alarm Return	35 %
Low Alarm String	2131 ID0 Flexible Sensor A Low
High Pre-alarm Enable	V
High Pre-alarm Return	n 🗘 85 %
High Pre-alarm Trip	\$ 90 %
High Alarm Enable	V
Action	Shutdown 👻
High Alarm	\$ 95 %
High Alarm String	2131 ID0 Flexible Sensor A High

Parameter	Description
Alarm Arming	A NOTE: For details of these, see the section 6 entitled <i>Alarm Arming</i> for more information.
	Select when the alarm generated by the analogue input becomes active: Always From Safety On From Starting
Low Alarm	= The Alarm is disabled.
Enable	☑ = The Low Alarm activates when the measured quantity drops below the
	Low Alarm setting.
Low Alarm Action	A NOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
	Select the type of alarm required from the list: <i>Electrical Trip</i> <i>Shutdown</i>
Low Pre-Alarm	= The Pre-Alarm is disabled.
Enable	☑ = The Low Pre-Alarm is active when the measured quantity drops below the
	Low Pre-Alarm Trip setting. The Low Pre-Alarm is automatically reset when
	the measured quantity rises above the configured Low Pre-Alarm Return level.
Low Alarm String	The text that is displayed on the module's LCD when the Low Alarm or Low
	Pre-Alarm activates.

Parameter descriptions are continued overleaf...

Parameter	Description
High Pre-Alarm	= The Pre-Alarm is disabled.
Enable	\square = The High Pre-Alarm is active when the measured quantity rises above the
	High Pre-Alarm Trip setting. The High Pre-Alarm is automatically reset when
	the measured quantity falls below the configured <i>High Pre-Alarm Return</i> level.
High Alarm	= The Alarm is disabled.
Enable	$\mathbf{\Sigma}$ = The High Alarm is active when the measured quantity rises above the
	High Alarm setting.
High Alarm Action	A NOTE: For details of these and the postion E antitled Alarm Trans
	for more information.
	"
	Select the type of alarm required from the list:
	Electrical Trip
	Shutdown
High Alarm String	The text that is displayed on the module's LCD when the High Alarm or High
	Pre-Alarm activates.

3.17.2.3 DIGITAL INPUTS

NOTE: An analogue input is only configurable as a digital input if it has been configured as Digital Input, refer to section 3.4.1 entitled *Analogue Input Configuration* in this document for further details.

Analogue Inpu	t A (Digital)			_ (As this e	xample	e	
Function	Alarm Mute		•	1	snows a	these	tinea	
Polarity	Close to Activate		•	(paramet	ers are		
Action		\frown	\bigcirc	\succ	greyed c	out as t	hey	
Arming		$\circ \bigcirc$	\searrow		are not a	applical	ble.	F
LCD Display	2131 ID0 Flexible Sen	sor A			ς,		L	
Activation Dela	iy Os				\searrow		/	
nalogue Inpu	t B (Digital)							
Analogue Inpu	t B (Digital)		_					
Analogue Inpu Function	t B (Digital) User Configured		•					
Analogue Inpu Function Polarity Action	t B (Digital) User Configured Close to Activate Warning		* *					
Analogue Inpu Function Polarity Action Arming	t B (Digital) User Configured Close to Activate Warning Always		* * *					
Analogue Inpu Function Polarity Action Arming LCD Display	t B (Digital) User Configured Close to Activate Warning Always 2131 ID0 Flexible Sen	sor B	* * *					
Analogue Inpu Function Polarity Action Arming LCD Display Activation Dela	t B (Digital) User Configured Close to Activate Warning Always 2131 ID0 Flexible Sen ty Os	sor B	* * *					
Analogue Inpu Function Polarity Action Arming LCD Display Activation Dela	t B (Digital) User Configured Close to Activate Warning Always 2131 ID0 Flexible Sen	sor B	*					
Analogue Inpu Function Polarity Action Arming LCD Display Activation Dela	t B (Digital) User Configured Close to Activate Warning Always 2131 ID0 Flexible Sen ay 0s	sor B	* * *					

Parameter descriptions are overleaf...

Parameter	Description
Function	Select the input function to activate when the relevant terminal is energised.
	See section entitled Input Functions for details of all available functions
Polarity	Select the digital input polarity:
	Close to Activate: The input function is activated when the relevant terminal is
	connected.
	Open to Activate: The input function is activated when the relevant terminal is
	disconnected.
Action	A NOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
	Select the type of alarm required from the list:
	Indication
	Shutdown
	Warning
Armina	
5	A NOTE: For details of these, see the section 6 entitled <i>Alarm Arming</i> for more information.
	Select when the input becomes active:
	Active from Mains Parallel
	Always
	From Safety On
	From Starting
	Never
LCD Display	The text that is displayed on the module's LCD when the input activates and
	generates an alarm.
Activation Delay	This is used to give a delay on acceptance of the input. Useful for liquid level
	switches or to mask short term operations of the external switch device.

3.17.3 DSE2133 INPUT MODULES

Select the DSENet ID of the input expansion to be configured. The ID of the expansion module is set by rotary decimal switch accessible under the removable cover of the device.

The following options are then shown:

2133 Expansion Enable

2133 Expansion Enable			
Expansion Enabled			
Link Lost Alarm Action	Shutdown	•	

Parameter	Description
Expansion Enabled	□ = The expansion module with the selected ID is not enabled. ☑ = The expansion module with the selected ID is enabled. If the expansion module is not connected / detected by the module, the module generates an <i>Exp. Unit Failure</i> alarm with the configured <i>Link</i> <i>Lost Alarm Action</i> severity.
Link Lost Alarm Action	Select the type of alarm required from the list: <i>Electrical Trip:</i> <i>Shutdown:</i> <i>Warning:</i>

2133 Expansion Inputs

The *Expansion Unit* page is then subdivided into smaller sections. Select the required section with the mouse.

2133 Expansion Inputs	
Inputs A - H	

3.17.3.1 ANALOGUE INPUTS

NOTE: An analogue input is only configurable as a flexible sensor if it has been configured as Flexible Analogue, refer to section 3.4.1 entitled *Analogue Input Configuration* in this document for further details.

Sensor Description

Sensor Description	
Sensor Name	2133 ID0 Flexible Sensor A

Parameter	Description
Sensor Name	Enter the Sensor Name, this text is shown on the module display when viewing the instrument.

Input Type

Input Type
3 Wire PT100

Parameter	Description
Input Type	Select the sensor type from the pre-defined list:
	2 Wire PT100
	3 Wire PT100
	Type J (Thermocouple)
	Type K (Thermocouple)

Sensor Alarms

Sensor Alarms	
Alarm Arming	Always
Low Alarm Enable Action Low Alarm	✓ Shutdown ↓ -95 •C
Low Pre-alarm Enable Low Pre-alarm Trip Low Pre-alarm Retur Low Alarm String	♥ 10 °C 50 °F 115 °C 239 °F 2133 ID0 Flexible Sensor A Low
High Pre-alarm Enable High Pre-alarm Retu High Pre-alarm Trip	Image: Ward of the second
High Alarm Enable Action High Alarm High Alarm String	Shutdown 640 °C 2133 IDO Flexible Sensor A High

Parameter	Description
Alarm Arming	A NOTE: For details of these, see the section 6 entitled <i>Alarm Arming</i> for more information.
	Select when the alarm generated by the analogue input becomes active: Always From Safety On From Starting
Low Alarm	= The Alarm is disabled.
Enable	☑ = The Low Alarm activates when the measured quantity drops below the
	Low Alarm setting.
Low Alarm Action	A NOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
	Select the type of alarm required from the list: <i>Electrical Trip</i> <i>Shutdown</i>
Low Pre-Alarm	= The Pre-Alarm is disabled.
Enable	\blacksquare = The Low Pre-Alarm is active when the measured quantity drops below the
	<i>Low Pre-Alarm Trip</i> setting. The <i>Low Pre-Alarm</i> is automatically reset when the measured quantity rises above the configured <i>Low Pre-Alarm Return</i> level.
Low Alarm String	The text that is displayed on the module's LCD when the <i>Low Alarm</i> or <i>Low Pre-Alarm</i> activates.

Parameter descriptions are continued overleaf...

Parameter	Description
High Pre-Alarm	= The Pre-Alarm is disabled.
Enable	$\mathbf{\nabla}$ = The High Pre-Alarm is active when the measured quantity rises above the
	High Pre-Alarm Trip setting. The High Pre-Alarm is automatically reset when
	the measured quantity falls below the configured <i>High Pre-Alarm Return</i> level.
High Alarm	= The Alarm is disabled.
Enable	$\mathbf{\Sigma}$ = The High Alarm is active when the measured quantity rises above the
	High Alarm setting.
High Alarm Action	A NOTE: For details of these and the postion E antitled Alarm Trans
	for more information.
	[]
	Select the type of alarm required from the list:
	Electrical Trip
	Shutdown
High Alarm String	The text that is displayed on the module's LCD when the High Alarm or High
	Pre-Alarm activates.

3.17.4 DSE2152 OUTPUT MODULES

Select the DSENet ID of the output expansion to be configured. The ID of the expansion input module is set by rotary decimal switch accessible under the removable cover of the device.

The following options are then shown:

2152 Expansion Enable

2152 Expansion Enable							
Expansion Enabled							
Link Lost Alarm Action	Shutdown	-]				

Parameter	Description
Expansion Enabled	□ = The expansion module with the selected ID is not enabled. ☑ = The expansion module with the selected ID is enabled. If the expansion module is not connected / detected by the module, the module generates an <i>Exp. Unit Failure</i> alarm with the configured <i>Link</i> <i>Lost Alarm Action</i> severity.
Link Lost Alarm Action	Select the type of alarm required from the list: <i>Electrical Trip:</i> <i>Shutdown:</i> <i>Warning:</i>

2152 Expansion Outputs

The *Expansion Unit* page is then subdivided into smaller sections. Select the required section with the mouse.

2152 Expansion Outputs	
	Outputs A - F

3.17.4.1 ANALOGUE OUTPUTS

Analogue Output A				
Output Configuration	on			
Output Name 2152 I	D0 Flexible Output A			
Output Type				
Source	Curve			
Generator Power Tota	I ▼ 0kW to 100kW = 0V to 10V ▼ Edit			

Output Configuration

Output Name 2152 ID0 Elexible Output A	Output Configuration	
Output Name 202 Bornexible output N	Output Name	2152 ID0 Flexible Output A

Parameter	Description
Output Name	Enter the Output Name, this text is shown on in the SCADA section when
	viewing the output.

Output Type

Output Type			Click to edit the 'output
Source	Curve		curve'. See section
Generator Power Total	✓ 0kW to 100kW = 0V to 10V	▼ Edit	Output Curve.

Parameter	Description
Source	Select the parameter that is to be mapped to the analogue output.
Curve	Select the output type and curve from a pre-defined list or create a user-
	defined curve
	Current: for sensors with maximum range of 0 mA to 20 mA
	Voltage: for sensors with maximum range of 0 V to 10 V

3.17.4.2 CREATING / EDITING THE OUTPUT CURVE

While the *DSE Configuration Suite* holds specifications for the most used output ranges, occasionally it is required that the expansion module's output be connected to a nonstandard device. To aid this process, a curve editor is provided.

When creating a new sensor curve the measurement quantity and measured parameter are required.

Select Axis Units			
X-Axis (Source)	Power (kW)]	
Y-Axis (Output)	Current (mA)		Click to begin creating the new curve.
	<u>K</u>	<u>C</u> ancel	

Parameter	Description
Y-Axis	The parameter measured by the DSE module that is to be mapped to the output.
(Source)	
X-Axis	Select the electrical quantity that the sensor outputs.
(Output)	Current (mA): For an output current within a range 0 mA to 20 mA
	Voltage (Volt): For an output voltage within a range of 0 V to 10 V

Curve creation and editor descriptions are continued overleaf...

3.17.5 DSE2157 RELAY MODULES

Select the DSENet ID of the output expansion to be configured. The ID of the expansion module is set by rotary decimal switch accessible under the removable cover of the device.

The following options are then shown:

2152 Expansion Enable

2152 Expansion Enable		
Expansion Enabled		
Link Lost Alarm Action	Shutdown	-

Parameter	Description
Expansion Enabled	\Box = The expansion module with the selected ID is not enabled.
	\blacksquare = The expansion module with the selected ID is enabled. If the
	expansion module is not connected / detected by the module, the
	module generates an Exp. Unit Failure alarm with the configured Link
	Lost Alarm Action severity.
Link Lost Alarm Action	Select the type of alarm required from the list:
	Electrical Trip:
	Shutdown:
	Warning:

Relay Outputs (Normally Open / Changeover)

Relay Outputs (Norn	nally Open)			
	Source		Polarity	
А	System Healthy	•	Energise	•
В	Generator At Rest	•	Energise	Ŧ
С	Generator Available	-	Energise	Ŧ
D	System In Auto Mode	-	De-Energise	Ŧ

Parameter	Description
Source	Select the output source to control the state of the output
	See section 3.5.3 entitled Output Sources for details of all available functions
Polarity	Select the digital input polarity:
	Energise: When the output source is true, the output activates.
	De-Energise: When the output source is true, the output deactivates.

3.17.6 DSE2548 ANNUNCIATOR MODULES

Select the DSENet ID of the LED expansion to be configured. The ID of the expansion input module is set by rotary decimal switch accessible on the rear of the device.

The following options are then shown:

2548 Expansion Enable

Expansion Enabled
Link Lost Alarm Action Shutdown 👻

Parameter	Description
Expansion	\Box = The expansion module with the selected ID is not enabled.
Enabled	\blacksquare = The expansion module with the selected ID is enabled. If the expansion
	module is not connected or detected by the module, the module generates an
	Exp. Unit Failure alarm with the configured Link Lost Alarm Action severity.
Link Lost Alarm	Select the type of alarm required from the list:
Action	Electrical Trip:
	Shutdown:
	Warning:

Sounder Configuration

Sounder Configuration						
Follow main unit Sounder enabled						

Parameter	Description
Follow Main Unit	\Box = If the <i>mute / lamp test</i> button is pressed, other DSE2548 modules and the host module does not respond to this.
	$\mathbf{\Sigma}$ = If the <i>mute / lamp test</i> button is pressed, other DSE2548 modules configured to <i>Follow main unit</i> and the host module also lamp test / mute their alarm and vice-versa.
Sounder	= The DSE2548 internal sounder does not annunciate on a fault condition
Enabled	becoming active.
	$\mathbf{\Sigma}$ = The DSE2548 internal sounder annunciates on a fault condition becoming active.

LED Indicators

LED Ir	ndicators					
А	System In Auto Mode	•	Unlit	-		
в	Generator Load Inhibited	-	Lit	+		
С	Combined Remote Start Request	•	Lit	-		
D	Common Alarm	•	Lit	-		
Е	Not Used	•	Lit	-		
F	Not Used	•	Lit	-		
G	Not Used	•	Lit	-		
н	Not Used	•	Lit	-		
Annunciator Insert Card						

Parameter	Description
Source	Select the output source to control the state of the output
	See section entitled Output Sources for details of all available functions
Polarity	Select the digital input polarity:
-	Lit: When the output source is true, the output is Lit.
	Unlit: When the output source is true, the output is Unlit.
Annunciator Insert	Allows the user to create and print the custom text insert cards for the LEDs.
Card	

3.17.7 BATTERY CHARGERS

Select the DSENet ID of the battery charger to be configured. The ID of the expansion module is set by configuration of the device.

The following options are then shown:

DSENet ID

DSENet ID 0	
Enable	
Link Lost Alarm Action	Shutdown 👻
Modbus Slave ID	÷ 11
Display Instrumentation	
Charger Name	Charger ID0

Parameter	Description
Enable	= The battery charger with the selected ID is not enabled.
	\mathbf{Z} = The battery charger with the selected ID is enabled. If the expansion
	module is not connected or detected by the module, the module generates an
	Exp. Unit Failure alarm with the configured Link Lost Alarm Action severity.
Link Lost Alarm	The following Alarm types are:
Action	
	Shutdown
	Electrical Trip
	Warning
Modbus Slave ID	The Slave ID used to address the battery charger via the host module's
	RS485 when using the host module as a Modbus RTU pass through.
Display	= The battery chargers' information is not shown on the host module's
Instrumentation	display.
	$\mathbf{\Sigma}$ = The battery charger information is shown on the host module's display.
Charger Name	Enter the Charger Name, this text is shown on the module display when
	viewing the battery charger instrumentation

Editing the Configuration

Charger Shutdown Alarms

Charger Shutdown Alarms				
Enable				
Module Action	Warning	•		
Alarm String	Charger ID0 Common Shutdown			

Parameter	Description
Enable	\Box = The DSE module does not display any shutdown alarms from the battery
	charger.
	$\mathbf{\Sigma}$ = The DSE module displays shutdown alarms from the battery charger with
	the configured action.
Alarm String	The text that is displayed on the module's LCD when the DSE module detects a
	shutdown fault from the battery charger.

Charger Warning Alarms

Charger Warning Alarn	ns		
Enable	V		
Module Action		Warning	•
Alarm String		Charger ID0 Common Warning	

Parameter	Description
Enable	 = The DSE module does not display any warning alarms from the battery charger. = The DSE module displays warnings alarms from the battery charger with the configured action.
Alarm String	The text that is displayed on the module's LCD when the DSE module detects a warning fault from the battery charger.

3.17.8 CREATING / EDITING THE SENSOR CURVES

While the *DSE Configuration Suite* holds sensor specifications for the most used resistive sensors, occasionally it is required that the module be connected to a sensor not listed by the *DSE Configuration Suite*. To aid this process, a sensor curve editor is provided.

When creating a new sensor curve the measurement quantity and measured parameter are required.

Select Axis Units			
<u>X</u> -Axis (Measured Quantity) <u>Y</u> -Axis	Resistive (Ohms) Temperature (°C)	•	Click to begin creating the new sensor curve
		<u>Q</u> K <u>C</u> ar	ncel

Parameter	Description
X-Axis	Select the electrical quantity that the sensor outputs.
(Measured	Current (mA): For sensors that output current within a range 0 mA to 20 mA
Quantity)	Voltage (0-10 Volts): For sensors that output voltage within a range of 0 V to 10 V
	Voltage (0-32 Volts): For sensors that output voltage within a range of 0 V to 32 V
	Resistive (Ohms): For sensors that output a resistance within a range 0 Ω to 3K Ω
	on Analogue Input A and 0 to 5K Ω on Analogue Inputs B to G
Y-Axis	Select the parameter that is being monitored by the sensor.
	Temperature (°C): For sensors that measure temperature.
	Pressure (Bar): For sensors that measure pressure.
	Percentage (%): For sensors that measure percentage.

Sensor curve creation and editor descriptions are continued overleaf...

Change Axis Range Example

NOTE: The difference between the Minimum and Maximum values on the X and Y axis must exceed the noted limits.

3.18 ADVANCED

The *Advanced* page is subdivided into smaller sections. Select the required section with the mouse.

Advanced	
Advanced Options	
AVR	
Reset Electrical Trip	
PLC	
Configurable Gencomm Pages	

3.18.1 ADVANCED OPTIONS

Protections

• WARNING! - Enabling this feature prevents the set being stopped upon critical alarm conditions. All shutdown alarms are disabled except for EMERGENCY STOP which continues to operate.

ſ	Protections		
	Disable	V	
	Protections Are Disabled	On Input	•
	Protections Disabled Alarm Action	Indication	•
	Coolant Level Protection Override		

This feature is provided to assist the system designer in meeting specifications for "Warning only", "Protections Disabled", "Run to Destruction", "Battleshort Mode" or other similar wording.

Parameter	Description
Disable	A NOTE: Writing a configuration to the controller that has "Protections Disabled" configured, results in a warning message appearing on the PC screen for the user to acknowledge before the controller's configuration is changed. This prevents inadvertent activation of the feature.
	\Box = The module operates as normal and provide engine shutdown if required. \blacksquare = <i>Protections disabled</i> function is activated. Operation depends upon the following configuration.
Protections are disabled	<i>Never</i> : The protections are not disabled <i>Always</i> : Protections are always overridden by the DSE controller. <i>On Input</i> : Protections are disabled whenever a configurable input set to
	Protections Disabled is activated
Protections Disabled Alarm Action	If Disable All Protections is set to On Input, this selection allows configuration of an alarm to highlight that the protections have been disabled on the engine. Indication: Any output or LCD display indicator configured to Protections Disabled is made active; however, the internal alarm sound does not operate. Warning: Any output or LCD display indicator configured to Protections Disabled is made active, and the internal alarm sound operates. When protections are disabled, Protections Disabled appears on the module display to inform the operator of this status.
Coolant Level Protection Override	 = When a CANbus engine is selected, the <i>Coolant Level Protection</i> is provided when supported by the ECU (ECM). The <i>Coolant Level Protection</i> is overridden and does not activate an alarm.
	on the module

Editing the Configuration

Out of Sync

Action	Electrical Trip 🔻	
Out Of Sync Angle	16 °	·
Out Of Sync Timer	0.2s	·

Parameter	Description
Action	A NOTE: For details of these, see the section 5 entitled <i>Alarm Types</i> for more information.
	Select the type of alarm required from the list: Auxiliary Mains Fail (Single Set) Electrical Trip Warning
Out of Sync Angle	During parallel operation, the phase of both supplies is monitored. Being in parallel means that the phase difference is zero degrees (0 °) between the two supplies.
	If the angle exceeds the <i>Out of Sync Angle</i> for longer than the duration of the <i>Out of Sync Timer</i> , an electrical trip alarm is generated taking the set off load and into the cooling timer, after which the set is stopped.

Troubleshooting Out of Sync

This section describes the most common causes for an Out of Sync alarm:

- The *Bus or Mains Sensing* connections have not been made between the common generator bus and the DSE module, or the bus or mains sensing fuses have blown or have been removed.
- The load switching device does not close quickly enough. Ensure the breaker closes within 100 ms of receiving the close signal.
- The *Out of Sync* timer is set too low. If this timer is raised away from the factory setting of 200 ms (0.2 s), ensure the consequences are fully understood.
- Something external has caused the breaker to open or has prevented it from closing. Typical
 examples are external G59 relays and other equipment operating directly on the breaker to
 open it.
- The breaker wiring 'logic' is not correct, causing the breaker to 'fire through', where it triggers the close mechanism, but the breaker does not actually mechanically close, it re-opens again.

Editing the Configuration

Other Timers

Other Timers		
Synchronisation Delay Mains Decoupling Supervision	3s 1.0s	

Parameter	Description
Synchronisation Delay	Delays the synchronising process to allow the set to stabilise and power parasitic loads or transformers (for instance) before the synchronising process begins.
Mains Decoupling Supervision	Delays the activation of the inbuilt Mains Decoupling detection when generator switchgear closes and is in parallel with the mains. Upon closing into parallel, the timer is activated. After the timer has expired, the Mains decoupling protection becomes active.

Other Timers (Single Set)

Other Timers (Single Set)		
Interlock Override Off	0.1s	

Parameter	Description
Interlock	Timer to delay the Interlock Override de-energising once a breaker has
Override Off	opened.

Dead Bus Synchronising

NOTE: When using a DSE CAN AVR in a *Dead Bus Synchronising* application, the DSE module can control the "*Alternator De-Excite*" via the CAN communication, ensure the "*De-Excite Mode*" is enabled in the DSE CAN AVR. For further details on the DSE CAN AVRs configuration refer to DSE Publication: 057-283 DSEA108 Software Manual or 057-294 DSEA109 Software Manual available on our website: www.deepseaelectronics.com

Set)
Disabled 🔻
1200 RPM
5s
5.0s
1.5s
iS

Parameter	Description
Enable	All synchronising is performed 'the traditional' way by achieving a slip
	frequency and waiting for the voltage, frequency, and phase to be within
	configured windows
	\blacksquare = The Dead Bus Synchronising feature is activated as configured below.
Sync Mode	Always: Dead bus sync is always used when the generators are required to be
	online and in the Auto mode (Dead bus sync does not operate in Manual mode
	under any circumstance).
	Disabled: The feature is not active
	On Input: Dead bus sync is used when a digital input configured for Multi Set
	Controller Dead Bus Synchronising is active.
	On Request From xx60: Dead bus sync is only used when a start request is
	received from a DSExx60 module.
Excitation	The speed at which the engine is deemed to be running fast enough for the output
Speed	configured as De-Excite Alternator to be de-energised.
•	Any sets not reaching this speed by the end of the Excitation Delay open their
	breakers and are removed from the Dead Bus Sync System.
Start Delay	Time delay used at start up to ensure the start request is not simply a fleeting
	request.
Excitation Delay	During engine run up, if the Excitation Speed is not achieved by the end of the
	Excitation Delay, the set is removed from the Dead Bus Sync system and attempts
	to synchronise in the 'traditional' way.
Excitation	The time allowed for the excitation field to build after being energised.
Ramp Time	At the end of this time, all frequency and voltage alarms are active.

ANOTE: If *Dead Bus Synchronising* is enabled and *Remote Start on Load* input is active then the module will choose the shortest start delay timer setting between the *Remote Start on Load Start Delay* timer and the *Dead Bus Synchronising Start Delay* timer.

Test Mode (Single Set)

Test mode (Single Set)
Run Mode	Parallel Mode 🔻
Parameter	Description
Run Mode	Configures the operation of the <i>Test</i> mode (Single Set) as:

Island Mode: The module performs the start sequence and transfers all the
load to the Generator. The Mains switchgear is left open, and the Generator
runs in island mode.
Parallel Mode: The module performs the start sequence and synchronises the
generator Bus to the Mains to allow long term parallel operation; peak lopping
when set to Mains Mode, or fixed export / base load when in Generator Mode.

3.18.2 AVR

CNOTE: At the time of writing, only the DSEA108 and DSEA109 AVRs are supported. The software versions of the DSEA108 & DSEA109 must be v2.0 or later. For further details, refer to DSE Publication: 057-281 DSEA108 Operator Manual or 057-295 DSEA109 Operator Manual available on our website: www.deepseaelectronics.com

ANOTE: The module's ECU port's baud rate is defined by the engine file selected in the *Application* section. Most engines' ECU baud rates are set to be 250 kb/s, ensure the baud rate of the AVR matches the engine ECU's baud rate.

This feature is to allow the DSE module communicate with a supported CAN AVR through its ECU port, to read the AVR instrumentations and to control the AVR for voltage matching during the synchronisation process and to control the reactive power during the load share.

AVR Options

AVR Options	
Enable AVR CAN Communications	
AVR Type	A108 -
AVR Source Address	230
Module CAN Address	÷ 36
Match AVR Alternative Configuration to Controller	
Disable CAN Voltage Control	

Parameter	Description
Enable AVR CAN	\Box = Communications with the CAN AVR is disabled
Communications	\blacksquare = Enables communication with the CAN AVR through the ECU port.
AVR Type	Select the DSE CAN AVR connected to the module's ECU port. Options
	are:
	• A108
	• A109
AVR Source Address	NOTE: For a full list of the AVR CAN message and instrumentation, refer to DSE Publication: 057-281 DSEA108 Operator Manual or 057-295 DSEA109 Operator Manual which is found on our website: www.deepseaelectronics.com
	NOTE: For further details on how to configure the DSEA108 CAN Source address, refer to DSE Publication: 057-283 DSEA108 Software Manual or 057-294 DSEA109 Software Manual which is available on our website: www.deepseaelectronics.com
	Set the AVR's CAN Source Address to communicate through.
Module CAN Address	The CAN Source address used by the module when sending CAN messages to the AVR.

Parameter descriptions are continued overleaf...

Parameter	Description
Match AVR Alternative Configuration to Controller	NOTE: It is the engineer's responsibility to ensure that the DSE module's Alternative Configurations are within the correct range of the CAN AVR's Alternative Configurations. For further details on how to configure the DSEA108 or DSEA109 alternative configurations, refer to DSE Publication: 057-283 DSEA108 Software Manual or 057-294 DSEA109 Software Manual which is found on our website: www.deepseaelectronics.com
	This feature is used to send a request to the CAN AVR to switch to an Alternative Configuration. If <i>Alt Config</i> 1 is selected in the DSE Module, Alt Config 1 is selected in the AVR too regardless of the configured values. \Box = The module does not send an <i>Alternative Configuration</i> request to the CAN AVR. $\overline{\Box}$ = The module sends an <i>Alternative Configuration</i> request to the CAN AVR.
Disable CAN Voltage Control	 AVR when required. □ = The DSE module controls the AVR through the CAN communication. During the synchronisation process the DSE module controls the voltage through the CAN, and when load sharing it controls the reactive power through the CAN. ☑ = The DSE module CAN Voltage Control is disabled. The DSE module does not control the AVR through the CAN communication for voltage matching and does not control the reactive power through the CAN when load sharing.

AVR Data Fail

Indicates CAN communication failure between the module and the CAN AVR.

AVR Data Fail	
Action	Shutdown 👻
Arming	From Safety On 💌
Activation Delay	0s

Parameter	Description
Action	Select the action to take when the module detects a communication failure with the CAN AVR. The options are:
	Electrical Trip
	None
	Shutdown
	Warning
Arming	Select when the AVR Data Fail is monitored.
	Options are as follows:
	Always: The alarm is active at any time the CAN Link is lost
	From Safety On: Active only after the Safety On delay timer
	From Starting: Active only after the Crank Relay is energised
	Loading Alarms Activation: The alarm is monitored after the generator is running,
	and the voltage and frequency are above their <i>Loading</i> levels, until the generator
	stops.
Activation	The time delay for the module to wait before activating AVR Data Fail alarm when
Delay	detected.

AVR Fault

AVR Fault	
Action	Shutdown 💌
Arming	From Safety On 💌
Activation Delay	0s

Parameter	Description
Action	Select the action to take after the Activation Delay timer, when the CAN AVR
	activates an alarm. The options are:
	Electrical Trip
	None
	Shutdown
	Warning
Arming	Select when the AVR Fault is monitored.
	Options are as follows:
	Always: The alarm is active at any time the CAN Link is lost
	From Safety On: Active only after the Safety On delay timer
	From Starting: Active only after the Crank Relay is energised
Activation	The time delay for the module to wait before activating AVR Fault alarm when
Delay	detected.

<u>AVR</u>

ANOTE: Ensure the generator's AVR has a wide enough range of adjustment to cater for nominal voltage adjustment whilst not affecting normal voltage synchronising or kvar load sharing functionality.

AVR	
Allow live nominal voltage adjust WARNING : Ensure the generator	system is adequately designed to cater for voltage adjustment.

Parameter	Description
Allow Live Nominal	= Adjustment of nominal voltage is disabled.
Voltage Adjust	$\mathbf{\Sigma}$ = The nominal voltage is adjusted through the running editor on the module
	display.

3.18.3 RESET ELECTRICAL TRIP

This feature is provided to assist the system designer in meeting specifications requirements to ensure the generator (if running) can take load again after the *Electrical Trip* alarm has been reset. Depending upon configuration, the generator may go into a cooling run or be inhibited from stopping after the *Electrical Trip* alarm activates.

Reset Electrical Trip	
Enable Enable by Input Enable by Front Pane	
Number of Resets Time Period	1 1 5m 1
Inhibit Engine Stop	

Parameter	Description
Enable	NOTE: Writing a configuration to the controller that has <i>Reset</i> <i>Electrical Trip</i> enabled, results in a warning message appearing on the PC screen for the user to acknowledge before the controller's configuration is changed. This prevents inadvertent activation of the feature.
	 □ = If an Electrical Trip alarm is reset, the generator must continue to cooldown before it becomes available again. ☑ = If an Electrical Trip alarm is reset, the generator is placed back on load if requested.
Enable by Input	NOTE: Only possible to enable if an input is configured to <i>Reset Electrical Trip.</i>
	 Reset Electrical Trip only by pressing the Close Generator button (if enabled). Reset Electrical Trip by an input configured for Reset Electrical Trip or by
	pressing the <i>Close Generator</i> 🛇 button (if enabled).
Enable by Front Panel	\Box = Reset Electrical Trip only by activating an input configured for Reset Electrical Trip (if enabled).
Number of Resets	The number of times any electrical trips are reset whilst the generator is running to enable it to go back on load. The counter goes to zero upon the generator stopping.
Time Period	The time interval for the <i>Number of Resets</i> . If the <i>Number of Resets</i> is reached within configured <i>Time Period</i> , no more resets can occur until the generator has stopped.
Inhibit Engine Stop	A NOTE: Writing a configuration to the controller that has <i>Inhibit</i> <i>Engine Stop</i> enabled, results in a warning message appearing on the PC screen for the user to acknowledge before the controller's configuration is changed. This prevents inadvertent activation of the feature.
	 □ = When an Electrical Trip alarm activates, the generator's load switch opens, and the generator goes into a cooling run before shutting down. ☑ = When an Electrical Trip alarm activates, the generator's load switch opens, and the generator continues to run with the <i>Electrical Trip Stop Inhibited Warning</i> alarm active.
3.18.4 PLC

NOTE: For further details and instructions on the *PLC Editor*, refer to DSE Publication: 057-314 Advanced PLC Software Manual which is found on our website: www.deepseaelectronics.com

PLC	
Open PLC Editor	Click to open the <i>PLC Editor</i> , then the <i>PLC Editor</i> opens as shown below.
	2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Of Tree include 1
	R is the responsibility of the same to ensure that the configured FLC functionality operations are shared and an ensure that the configured FLC functionality operations are indexed and the functio

3.18.5 CONFIGURABLE GENCOMM PAGES 166 TO 169

Configurable Gencomm Pages			
Page 166			
Page 167			
Page 168			
Page 169			

For advanced Modbus users of the controller, configurable GenComm pages are available. The intention is to allow the user to create personal collections of data in subsequent registers to minimise the number of Modbus reads required by the master, and hence speed up data collection.

All configurable GenComm registers are 32-bit unsigned format.

Genc	Gencomm Page 166						
Registe	er Value	Reaiste	r Value	Register	Value	Register	Value
0-1	<not used=""></not>	64-65	<not used=""></not>	128-129	<not used=""></not>	192-193	<not used=""></not>
2-3	<not used=""></not>	66-67	<not used=""></not>	130-131	<not used=""></not>	194-195	<not used=""></not>
4-5	<not used=""></not>	68-69	<not used=""></not>	132-133	<not used=""></not>	196-197	<not used=""></not>
6-7	<not used=""></not>	70-71	<not used=""></not>	134-135	<not used=""></not>	198-199	<not used=""></not>
8-9	<not used=""></not>	72-73	<not used=""></not>	136-137	<not used=""></not>	200-201	<not used=""></not>
10-11	<not used=""></not>	74-75	<not used=""></not>	138-139	<not used=""></not>	202-203	<not used=""></not>
12-13	<not used=""></not>	76-77	<not used=""></not>	140-141	<not used=""></not>	204-205	<not used=""></not>
14-15	<not used=""></not>	78-79	<not used=""></not>	142-143	<not used=""></not>	206-207	<not used=""></not>
16-17	<not used=""></not>	80-81	<not used=""></not>	144-145	<not used=""></not>	208-209	<not used=""></not>
18-19	<not used=""></not>	82-83	<not used=""></not>	146-147	<not used=""></not>	210-211	<not used=""></not>
20-21	<not used=""></not>	84-85	<not used=""></not>	148-149	<not used=""></not>	212-213	<not used=""></not>
22-23	<not used=""></not>	86-87	<not used=""></not>	150-151	<not used=""></not>	214-215	<not used=""></not>
24-25	<not used=""></not>	88-89	<not used=""></not>	152-153	<not used=""></not>	216-217	<not used=""></not>
26-27	<not used=""></not>	90-91	<not used=""></not>	154-155	<not used=""></not>	218-219	<not used=""></not>
28-29	<not used=""></not>	92-93	<not used=""></not>	156-157	<not used=""></not>	220-221	<not used=""></not>
30-31	<not used=""></not>	94-95	<not used=""></not>	158-159	<not used=""></not>	222-223	<not used=""></not>
32-33	<not used=""></not>	96-97	<not used=""></not>	160-161	<not used=""></not>	224-225	<not used=""></not>
34-35	<not used=""></not>	98-99	<not used=""></not>	162-163	<not used=""></not>	226-227	<not used=""></not>
36-37	<not used=""></not>	100-101	<not used=""></not>	164-165	<not used=""></not>	228-229	<not used=""></not>
38-39	<not used=""></not>	102-103	<not used=""></not>	166-167	<not used=""></not>	230-231	<not used=""></not>
40-41	<not used=""></not>	104-105	<not used=""></not>	168-169	<not used=""></not>	232-233	<not used=""></not>
42-43	<not used=""></not>	106-107	<not used=""></not>	170-171	<not used=""></not>	234-235	<not used=""></not>
44-45	<not used=""></not>	108-109	<not used=""></not>	172-173	<not used=""></not>	236-237	<not used=""></not>
46-47	<not used=""></not>	110-111	<not used=""></not>	174-175	<not used=""></not>	238-239	<not used=""></not>

The configurable Modbus pages are:

Page	Hex Address	Decimal Address
166	A600	42496
167	A700	42752
168	A800	43008
169	A900	43264

Example of GenComm Page Configuration:

Page 166				
•				
-				
-				
-				

The register address is obtained from the formula:

register_address=page_number*256+register_offset.

To read the *Engine Speed* from the above register, the Modbus master device needs to read the data in two registers and then combine the data from the Most Significant Bit and the Least Significant Bit. MSB address in Decimal = (166 * 256) + 2 = 42498 LSB address in Decimal = (166 * 256) + 3 = 42499

4 SCADA

SCADA stands for Supervisory Control And Data Acquisition and is provided both as a service tool and as a means of monitoring and controlling the generator set.

As a service tool, the SCADA pages are to check the operation of the controller's inputs and outputs as well as checking the generators operating parameters.

The SCADA page is subdivided into smaller sections. Select the required section with the mouse.

Example

Single Set Multi Set G8600 Scada v1.0 ŝ G8600 Scada v1.0 \$ G8600 SCADA ⊟ G8600 SCADA Generator Identity Generator Identity Mimic Mimic Digital Inputs **Digital Inputs** Virtual Inputs Virtual Inputs Digital Outputs Digital Outputs Virtual LEDs Virtual LEDs Bus Bus is available Mains Mains is available in Generator Generator in Multi Set mode Single Set mode Engine Engine Fuel Use and Efficiency Fuel Use and Efficiency Flexible Sensors Flexible Sensors Configurable CAN Instrumentation Configurable CAN Instrumentation Alarms Alarms Engine Alarms Engine Alarms Status Status Event Log Event Log Enhanced CANbus Enhanced CANbus Maintenance Communications Information Communications Information 🕀 Data Log 🕀 Data Log AVR Expansion Expansion

057-322 ISSUE: 1

4.1 GENERATOR IDENTITY

This section displays the module's configuration settings for *Site ID* and *Genset ID*. For further details on how to configure these items, refer to section 3.12.1 entitled *Communications Options* for more information.

Generator Identity				
Site Identity				
Deep Sea Electronics Head Office				
Genset Identity				
Volvo TAD941 GE				

4.2 MIMIC

This section provides a mimic of the module's fascia and allows the operator to change the control mode of the module.

4.3 DIGITAL INPUTS

This section displays the status of the module's digital inputs and their configured functions. For further details on how to configure these items, refer to section 3.4.3.1 entitled *Digital Inputs* for more information.

4.4 VIRTUAL INPUTS

This section displays and controls the status of the module's *Virtual Input Control Sources*. Any of the module's outputs, expansion outputs, LED indicators, expansion LEDs indicators or PLC Flag Tests are to be configured to *Remote Control 1 to 10*. They are provided to enable control using the SCADA section of the DSE Configuration Suite or by third party PLC or Building Management Systems (for example) using the Modbus protocol. For further details on how to configure these items, refer to section 3.5.1 entitled *Digital Outputs* for more information.

				For a Gencomm
/irtu	al Input Control	Sources		activation in
	Control		Open / Closed	Active is triggered
1	8610	Activate	00	🔿 🍥 📐 when the Scada 🔪
2	8620	Activete		button is released
3	Virtual Input 3		-00	• Feleased.
4	Virtual Input 4		-0-0-	
5	Virtual Input 5		-0-0-	•
6	Virtual Input 6		-0-0-	•
7	Virtual Input 7	0	-00	State of the Virtual
8	Virtual Input 8		-0-0-	Input (on or off)
9	Virtual Input 9	0	-00	•
10	Virtual Input 10		-0-0-	•
11	Virtual Input 11	E	-	□ = Virtual Input function
12	Virtual Input 12		-00	name is de-activated. ☑ = Virtual Input function

4.5 DIGITAL OUTPUTS

This section displays the status of the module's digital outputs and their configured functions. For further details on how to configure these items, refer to section 3.5.1 entitled *Digital Outputs* for more information.

Relay Out	puts (Supplied From Emergency S	top Input)		
		Active	Open / Closed	
А	Fuel Relay	•	-00	State of the
В	Start Relay			output (open
				or closed)
Relay Out	puts (Volts Free)			<u> </u>
		Active	Open / Closed	
C (N	I/C) Not Used		-0 0	
D	Close Gen Output	•	-0 0-	
Digital Ou	Itputs (DC Supply Out)			
		Active	Open / Closed	
E	Preheat During Preheat Timer	Active	open / olosed	
F	Common Alarm	ŏ		
G	Audible Alarm	ŏ		
н	System In Auto Mode		-0 0-	
I	Fuel Pump Control		-0 0-	
J	Fuel Level Low Alarm	•	-0 0-	
K	Not Used	•	-0 0-	
L	Not Used		-0 0-	
	Shows if the out active or not. Th and is not active	tput chanr his output e.	nel is is open	_

4.6 VIRTUAL LEDS

This section displays the status of the module's *Virtual LEDs* which are shown on the modules screen (10 available, see section 3.5.2) and the functions they are configured for. They are provided to show status and appear only in the SCADA section of the DSE Configuration Suite or read by third party PLC or Building Management Systems (for example) using the Modbus protocol. For further details on how to configure these items, refer to section 3.5.1 entitled *Digital Outputs* for more information.

4.7 BUS (MULTI SET)

This section displays the module's measurement of the Bus.

Bus				
Frequency				
		0.00 Hz		
Phase Rotation	1			
		Indeterminate		
Phase To Neut	ral Voltages			
	L1 - N 0.0 V	L2 - N 0.0 V	L3 - N 0.0 V	
Phase To Phase	e Voltages			
	L1 - L2 0.0 V	L2 - L3 0.0 V	L3 - L1 0.0 V	
Fault Ride Through				
		0 Events		

4.8 MAINS (SINGLE SET)

The *Mains* section is subdivided into smaller sections. Select the required section with the mouse.

Mains
Frequency and Voltages
Power

4.8.1 FREQUENCY & VOLTAGES

This section displays the module's measurement of the *Mains* frequency, phase voltages, current and phase rotation.

Mains	Mains				
Frequency					
		0.00 Hz			
Phase To Neut	ral Voltages				
	L1 - N 0.0 V	L2 - N 0.0 V	L3 - N 0.0 V		
Phase To Phase	e Voltages				
	L1 - L2 0.0 V	L2 - L3 0.0 V	L3 - L1 0.0 V		
Mains Current					
		L1 0 A			
Phase Rotation	2				
ridse Kotation					
		Indeterminate			

4.8.2 **POWER**

This section displays the module's measurement of the *Power* the Mains is supplying.

Power		
Matte		
watts		
	L1 0.00 kW	Total 0.00 kW 0.0 %
VA		
	L1 0.0 kVA	Total 0.0 kVA
VAr		
	L1 0.0 kVAr	Total 0.0 kVAr
Power factor		
	L1 0.00	Average 0.00

4.9 GENERATOR

The *Generator* section is subdivided into smaller sections. Select the required section with the mouse.

Generator
Frequency, Voltages and Current
Power
Governor / AVR Interface
Sync
Load Control
Load Levels
De-Rate

4.9.1 FREQUENCY, VOLTAGES AND CURRENT

This section displays the module's measurement of the *Generator* frequency, voltage, and current supply.

Frequency				
		50.01 Hz		
Dhasa To No	utral Voltagos			
Phase TO Net	utrai voitages			
	L1 - N	L2 - N	L3 - N	
	240.1 V	240.1 V	240.2 V	
Phase To Pha	ase Voltages			
	L1 - L2 415.9 V	L2 - L3 415.0 V	L3 - L1 415 4 V	
Current				
	11	12	13	
	36.0 A	36.0 A	36.0 A	
Earth Curren	t			
		0.0 A		
Phase Rotatio	on			
		L1-L2-L3		

4.9.2 POWER

Watts				
	L1 8.62 kW 9.9 %	L2 8.67 kW 10.0 %	L3 8.62 kW 9.9 %	Total 25.91 kW 9.9 %
VA				
	L1 8.6 kVA	L2 8.7 kVA	L3 8.7 kVA	Total 26.0 kVA
VAr				
	L1 0.1 kVAr	L2 0.0 kVAr	L3 0.1 kVAr	Total 0.2 kVAr
Power	factor			
	L1 0.99	L2 1.00	L3 1.00	Average 0.99
Accum	ulated Power			
	-kWh	kWh 69036.7 kWh	kVAh 75913.8 kVAh	kVArh 8095.8 kVArh

This section displays the module's measurement of the Power the Generator is supplying.

4.9.3 AMSC LINK (MULTI SET)

This section displays the status of the AMSC Link.

AMSC Lir	۱k			
Bus				
Sets On The Sets On Loa Mains Contr Segment Nu Bus Ties On Group Contr Group Contr Is In A Grou	e Bus ad ollers On The imber i The Bus rollers On The rollers On Loa p	Bus Bus d		Shows the status of the Bus and configuration of modules.
GenSet				
AMSC ID Priority	2 2	2 2 2	Set Set	Allows AMSC ID and priority number to be configured.
Commission	ing Screen			
Enable 🔽	• <	Enables of screen on	ommissioning the module.	3

4.9.3.1.1 ADJUSTING GAIN (P), STABILITY (I) AND DERIVATIVE (D)

Initial Setup

In most cases the DSE factory settings of 20% for *Gain (P), Stability (I)* and 0% for *Derivative (D)* are suitable for most systems. This is because the DSE module's control is limited by the *Gain (P), Stability (I)* and *Derivative (D)* settings of the engine's governor / alternator's AVR. Before adjusting the DSE module's settings, adjust the *Gain (P), Stability (I)* and *Derivative (D)* settings of the engine's governor / alternator's AVR. Before adjusting the DSE module's settings, adjust the *Gain (P), Stability (I)* and *Derivative (D)* settings of the engine's governor / alternator's AVR in accordance with the manufacturer's recommendations.

Calibration

If the load sharing response of the system is not satisfactory after adjusting the *Gain (P), Stability (I)* and *Derivative (D)* settings of the engine's governor / alternator's AVR, then start to adjust the DSE's settings by:

- 1. Starting with the *Gain (P), Stability (I)* at 5 % and *Derivative (D)* at 0%. Place the generators in parallel with no load.
- 2. Gradually increase the *Gain (P)* setting until the generator power production becomes unstable. Very slowly decrease the *Gain (P)* setting, until the power production stabilises. Reduce the setting further by approximately 10 %.
- 3. Gradually increase the *Stability (I)* setting until the generator power production becomes unstable. Very slowly decrease the *Stability (I)* setting, until the power production stabilises.
- 4. Apply and remove load to the generators using a load bank to test response and ensure no oscillation of power between generators. If a load bank is not available repeat the synchronising process several times to see the effect of the changes. Also attempt to 'knock' the governor actuator or change the 'slip frequency' setting to disturb the engine speed and force the controller into making further changes.
- 5. To improve the load change repose, increase the *Derivative (D)* setting to decrease the overshoot and settling time.

The affect the *Gain (P), Stability (I)* and *Derivative (D)* settings have on the response of a load step being applied to the generator are shown below.

PID Adjustment	Overshoot	Settling Time	Steady State Error
Increase Gain (P)	Increases	Minimal Effect	Decreases
Increase Stability (I)	Increases	Increases	Eliminates
Increase Derivative (D)	Decrease	Decreases	No Effect

Troubleshooting

ANOTE: An over damped response results in a slower control process. An under damped response (overshooting the target) leads to an unstable control process. Either case leads to undesirable consequences such as overcurrent or reverse power, resulting in generator shutdown, and loss of supply to the load.

If the load is oscillating quickly between the generators, it suggests that the setting for the *Gain (P)* on the generator(s) is too high or too low. A slow rolling oscillation usually indicates that the *Stability (I)* is too high or too low. These oscillations are caused by incorrect settings on the engine's governor / alternator's AVR and/or the DSE module.

It is possible for the load sharing stability to change as different generators are go in and out of parallel with one another. Ensure that the *Gain (P), Stability (I)* and *Derivative (D)* are calibrated to give a stable condition when all generators are running in parallel.

4.9.4 GOVERNOR / AVR INTERFACE

ONOTE: These settings are not saved within the module's configuration file. They are stored in a different memory area and not transferred with the configuration file. The *Backup Module* feature transfers both the configuration file AND the settings of the Multi-set, Governor / AVR interface and Sync page.

This section allows the user to calibrate the *SW1* (Switch 1) and *SW2* (Switch 2) settings for the *Analogue Governor Output* and *Analogue AVR Output* which the DSE module uses to control synchronising and load sharing.

As the input requirements of governors and AVRs vary from manufacturer to manufacturer, and even from model to model, the DSE module is configurable to allow connection to these devices. For information regarding typical wiring diagrams and suggested SW1 / SW2 settings for common governors and AVRs, refer to DSE publication: **057-046 DSE Guide to Synchronising and Load Sharing (Part 2)** which is found on the DSE website: <u>www.deepseaelectronics.com</u>.

Governor						Ň	
Centre (SW1) Range (SW2)	4.9 6.8]	0	4.9 6.8	Reset Reset	
Speed And Fr	equer	псу					
		Engine Generat Governo AVR An	Speed or Frequency or Analogue alog	1499 RPM 49.98 Hz 3.0 % -1.1 %	Gov	ernor a	and AVR Analogue
AVR					perc	entage	
Centre (SW1) Range (SW2)	0.0 7.0			0	= 0.0 = 7.0	Reset Reset	
Phase To Neu	tral V	oltages					
	L1 23	- N 9.9 V	L2 - N 240.3 V	L3 - N 239.8 V			
Phase To Phas	se Vol	tages					
	L1 41	- L2 6.8 V	L2 - L3 415.8 V	L3 - L1 415.3 V			

4.9.4.1 SW1

SW1 is also known as Centre. SW1 sets the voltage produced by the DSE module's Analogue Governor / AVR Outputs for 'nominal' running condition. For example, SW1 = 5 for the Analogue Governor Output, means that the Analogue Governor Output is $2.5 V_{DC}$ when the generator is required to run at its nominal speed.

4.9.4.2 SW2

SW2 is also known as *Range. SW2* sets the range of adjustment around the *SW1 (Centre)* voltage to adjust engine speed or generator voltage away from nominal conditions. For example, SW2 = 3 for the *Analogue Governor Output*, means that the *Analogue Governor Output* is made to change by ± 2 V_{DC} around the *SW1 (Centre)* voltage to make the engine run at lower/higher speed to synchronise or to increase/decrease kW for load sharing.

4.9.4.3 VOLTAGE SETTINGS

The *Analogue Governor Output* and *Analogue AVR Output* are both isolated from ground and battery negative, allowing compatibility with devices with inputs that are not referenced to ground or battery negative. The table below specifies the relationship between the SW1 / SW2 setting and the voltage set point.

SW1 Setting	SW2 Setting	Centre Voltage of Governor/AVR	Range Voltage	Maximum Voltage Range of Governor/AVR Analogue Output
-19	1	-9.5	± 0.5	-10 VDC to -9 VDC
-18	2	-9.0	± 1.0	-10 VDC to -8 VDC
-17	3	-8.5	± 1.5	-10 VDC to -7 VDC
-16	4	-8.0	± 2.0	-10 VDC to -6 VDC
-15	5	-7.5	± 2.5	-10 VDC to -5 VDC
-14	6	-7.0	± 3.0	-10 VDC to -4 VDC
-13	7	-6.5	± 3.5	-10 VDC to -3 VDC
-12	8	-6.0	± 4.0	-10 VDC to -2 VDC
-11	9	-5.5	± 4.5	-10 VDC to -1 VDC
-10	10	-5.0	± 5.0	-10 VDC to 0 VDC
-9	11	-4.5	± 5.5	-10 VDC to 1 VDC
-8	12	-4.0	± 6.0	-10 VDC to 2 VDC
-7	13	-3.5	± 6.5	-10 VDC to 3 VDC
-6	14	-3.0	± 7.0	-10 VDC to 4 VDC
-5	15	-2.5	± 7.5	-10 VDC to 5 VDC
-4	16	-2.0	± 8.0	-10 VDC to 6 VDC
-3	17	-1.5	± 8.5	-10 VDC to 7 VDC
-2	18	-1.0	± 9.0	-10 VDC to 8 VDC
-1	19	-0.5	± 9.5	-10 VDC to 9 VDC
0	20	0.0	± 10	-10 VDC to 10 VDC
1	19	0.5	± 9.5	10 VDC to -9 VDC
2	18	1.0	± 9.0	10 VDC to -8 VDC
3	17	1.5	± 8.5	10 VDC to -7 VDC
4	16	2.0	± 8.0	10 VDC to -6 VDC
5	15	2.5	± 7.5	10 VDC to -5 VDC
6	14	3.0	± 7.0	10 VDC to -4 VDC
7	13	3.5	± 6.5	10 VDC to -3 VDC
8	12	4.0	± 6.0	10 VDC to -2 VDC
9	11	4.5	± 5.5	10 VDC to -1 VDC
10	10	5.0	± 5.0	10 VDC to 0 VDC
11	9	5.5	± 4.5	10 VDC to 1 VDC
12	8	6.0	± 4.0	10 VDC to 2 VDC
13	7	6.5	± 3.5	10 VDC to 3 VDC
14	6	7.0	± 3.0	10 VDC to 4 VDC
15	5	7.5	± 2.5	10 VDC to 5 VDC
16	4	8.0	± 2.0	10 VDC to 6 VDC
17	3	8.5	± 1.5	10 VDC to 7 VDC
18	2	9.0	± 1.0	10 VDC to 8 VDC
19	1	9.5	± 0.5	10 VDC to 9 VDC

4.9.4.4 SUMMARY

Consider the settings for the Analogue Governor / AVR Output as SW1 ± SW2

Example 1

In this example the Analogue Governor Output is 7 $V_{DC} \pm 3V_{DC}$ (based upon the settings of SW1 = 14 and SW2 = 6), effectively giving a range of adjustment between 4.0 V_{DC} to 10.0 V_{DC} .

SW1 Setting	Maximum SW2 Setting	Centre Voltage of Governor/AVR Analogue Output	Maximum Voltage Range of Governor/AVR Analogue Output	Maximum Voltage Range of Analogue Output
14	6	7	10 VDC to 4 VDC	± 3

Example 2

In this example the *Analogue Governor Output* is $0.5 V_{DC} \pm 9.5 V_{DC}$ (based upon the settings of SW1 = 1 and SW2 =19), effectively giving a range of adjustment between -9 V_{DC} to 10.0 V_{DC} .

SW1 Setting	Maximum SW2 Setting	Centre Voltage of Governor/AVR Analogue Output	Maximum Voltage Range of Governor/AVR Analogue Output	Maximum Voltage Range of Analogue Output
1	19	0.5	10 VDC to -9 VDC	± 9.5

— SW2 (Range) +10 —		 10.0 V _{DC}
	- SW1 (Centre) 0.5 V _{DC}	 $0.5 V_{DC}$
¥		 0 V _{DC}
SW2 (Range) -9 V _{DC}	Ļ	 -9 Vdc

SW1 Setting	Maximum SW2 Setting	Centre Current of Governor/AVR Analogue Output	Maximum Current Range of Governor/AVR Analogue Output	Maximum Current Range of Analogue Output
4	16	4	4 mA to 20 mA	16
5	15	5	5 mA to 20 mA	15
6	14	6	6 mA to 20 mA	14
7	13	7	7 mA to 20 mA	13
8	12	8	8 mA to 20 mA	12
9	11	9	9 mA to 20 mA	11
10	10	10	10 mA to 20 mA	10
11	9	11	11 mA to 20 mA	9
12	8	12	12 mA to 20 mA	8
13	7	13	13 mA to 20 mA	7
14	6	14	14 mA to 20 mA	6
15	5	15	15 mA to 20 mA	5
16	4	16	16 mA to 20 mA	4
17	3	17	17 mA to 20 mA	3
18	2	18	18 mA to 20 mA	2
19	1	19	19 mA to 20 mA	1
20	0	20	20 mA to 20 mA	0

4.9.4.5 CURRENT SETTINGS

Example

In this example the *Analogue Governor Output* is 4 mA (based upon the settings of SW1 = 4 and SW2 = 16), effectively giving a range of adjustment between 4 mA to 20 mA.

SW1 Setting	Maximum SW2 Setting	Centre Current of Governor/AVR Analogue Output	Maximum Current Range of Governor/AVR Analogue Output	Maximum Current Range of Analogue Output
4	16	4 mA	4 mA to 20 mA	16 mA

4.9.5 SYNC

The *Sync* section is subdivided into smaller sections. Select the required section with the mouse.

4.9.5.1 ANALOGUE

Frequency Synchroniser

Frequency Synchroniser		,
Slip Frequency 0.10 Hz	_]	□ 0.10 Hz
Gain 20 %]	[□] 20 %

Parameter	Description
Slip Frequency	This is the frequency difference between the generator and the bus which the module adjusts to during synchronising. This is done to match the phase of the generator supply to bus supply. The phase of the supplies then drifts in and out of synchronism at a rate of 1/ <i>Slip Frequency</i> times per second. e.g., with a <i>Slip Frequency</i> of 0.2 Hz, the supplies are in phase once every five seconds.
Gain	The setting for the gain of the control loop used for the frequency synchroniser. In general, a lower setting results in a slow frequency matching process. Having a high a setting may cause instability (hunting) if this occurs lower the gain setting.

Sync Locking

Sync Locking			
Frequency Window	0.06 Hz	-]	0.06 Hz
Frequency Stability	20 %		20 %
Phase Window	30 °		30 °
Phase Stability	20 %		20 %
Dead Band	2 °		2 °

Parameter	Description
Frequency	The setting for adjusting the allowed frequency range.
Window	
Frequency	The setting for adjusting the frequency which governs the amount of power
Stability	produced.
Phase Window	The setting for adjusting the allowed phase shift.
Phase Stability	The setting to allow the amount of phase drift.
Dead Band	The setting for adjusting the total governor non-response zone.

How to Setup Phase Locking

- Ensure Slip Sync is functioning
- Ensure the frequency window is less than 0.1Hz
- Set the frequency stability gain the same as frequency synchroniser gain
- Adjust the phase stability to slowly bring the system into sync until it's within the phase window. If it overshoots, then reduce the gain and increase the dead band setting

NOTE: A wide phase window will increase the time to achieve sync but will allow more time for the set to settle before entering the sync window.

Voltage Matcher

Voltage Matcher		
Gain	20 %	 20 %

Parameter	Description
Gain	The setting for the gain of the control loop used for the voltage synchroniser. In general, a lower setting results in a slow frequency matching process. Having a high a setting may cause instability (hunting) if this occurs lower the gain setting.

Load Share Mode

For information regarding calibrating these settings, refer section 4.9.3.1.1 entitled Adjusting Gain (P), Stability (I) and Derivative (D) for more information.

Parameter	Description
Governor (kW)	The setting for the Gain (P), Stability (I) and Derivative (D) of the control
Gain (P)	loop used for the isochronous kW load sharing.
Stability (I)	
Derivative (D)	
AVR (kvar)	The setting for the Gain (P), Stability (I) and Derivative (D) of the control
Gain (P)	loop used for the kvar load sharing.
Stability (I)	
Derivative (D)	

Mains Parallel Mode

ONOTE: The Mains Parallel Mode PID settings only have effect when a digital input is configured for Mains Parallel Mode instructing the module to operate in fixed export mode with the utility supply. For more information on this application, refer to DSE Publication: 056-054 DSE8x10 in Fixed Export (Base Load) which is found on our website: www.deepseaelectronics.com

The user has the ability to configure different *Gain (P), Stability (I)* and *Derivative (D)* settings for *Mains Parallel Operation.* Typically, engine governors need lower gain when in parallel with the Mains supply than they do for single set operation or paralleling with other generators.

For information regarding calibrating these settings, refer section 4.9.3.1.1 entitled Adjusting Gain (P), Stability (I) and Derivative (D) for more information.

Parameter	Description
Governor (kW)	The setting for the Gain (P), Stability (I) and Derivative (D) of the control loop
Gain (P)	used for the kW control when running in <i>Mains Parallel Mode</i> .
Stability (I)	
Derivative (D)	
AVR (kvar)	The setting for the Gain (P), Stability (I) and Derivative (D) of the control loop
Gain (P)	used for the kvar control when running in Mains Parallel Mode.
Stability (I)	
Derivative (D)	

4.9.6 LOAD CONTROL

Commissioning Screen

Commissioning Screen	
Enable 🗹 🌔	

NOTE: For further details and instructions on Commissioning Screen, refer to DSE Publication: 057-301 DSE8620 MKII Operators Manual which is found on our website: www.deepseaelectronics.com

Parameter	Description
Enable	\Box = Commissioning screens are not shown on the module display
	\square = The commissioning screens are shown at the bottom of the <i>Generator</i>
	section on the module display.
	These pages are useful for the commissioning and troubleshooting of a load
	share system.

Mains Stability

Mains Stability
Timer 0.0s

Parameter	Description	
Mains Stability	This is the time the DSE8600 module takes to average the Mains kilowatt	
Timer	during the peak lopping or peak shaving. It is used to prevent the generator kilowatt change so rapidly when the mains is unstable, instead a rolling average is used as the target for the mains rather than the actual mains kW.	

4.9.7 LOAD LEVELS

Analogue Drive

Analogue D	rive			
Governor AVR	0.0 % 0.0 %			

Parameter	Description
Governor Analogue Drive	Shows the percentage of the module's range of adjustment over the governor (set by SW2) to run the generator at the required frequency or kW level for load sharing.
	For example, with an SW2 = 3 (\pm 2 V _{DC}) for the Analogue Governor Output and a Governor Analogue Drive Percentage = -50%, means that the Analogue Governor Output is made to change by -1 V _{DC from} the SW1 (Centre) voltage
	 Typical magnitudes at full load, with the switchgear closed and running in <i>Isochronous Load Sharing</i> or <i>Mains Parallel Mode</i> operation are as follows: No more than 10% when there is no external governor droop enabled No more than 30% when external governor droop is enabled
	 Typical magnitude at no load, with the switchgear closed and <i>Frequency</i> <i>Droop</i> enabled within the module's configuration are follows: No more than 85%
AVR Analogue Drive	Shows the percentage of the module's range of adjustment over the AVR (set by SW2) to run the generator at the required voltage or kvar level for load sharing.
	For example, with an SW2 = 3 (\pm 2 V _{DC}) for the <i>Analogue AVR Output</i> and a <i>AVR Analogue Drive Percentage</i> = +75%, means that the <i>Analogue AVR Output</i> is made to change by +1.5 V _{DC from} the <i>SW1 (Centre)</i> voltage
	 Typical magnitudes at full load, with the switchgear closed and running in <i>Isochronous Load Sharing</i> or <i>Mains Parallel Mode</i> operation are as follows: No more than 10% when there is no external AVR droop enabled No more than 30% when external AVR droop is enabled
	Typical magnitude at no load, with the switchgear closed and <i>Voltage Droop</i> enabled within the module's configuration are follows: • No more than 85%

Levels

ANOTE: The Load Level settings (excluding the Minimum Load Level setting) only have effect when a digital input is configured for Mains Parallel Mode instructing the module to operate in fixed export mode with the utility supply. For more information on this application, refer to DSE Publication: 056-054 DSE8x10 in Fixed Export (Base Load) which is found on our website: www.deepseaelectronics.com

For further details on how to configure the different power modes and their operation, refer to section 3.7.9.6 entitled *Power Control* and section 3.7.9.7 entitled *Voltage and Reactive Power Control* for more information.

Levels			
Mode		Generator	•
Power Control Mode		Constant Power (Default)	•
Reactive Power Cont	trol Mode	Constant Reactive Power (Default) 🔻
Spinning Reserve		‡ 0	0 kW
Spinning Capacity		\$ 0	0 kW
Load Level Minimum Maximum	0 %	0 %	Reset
VAr Level Maximum Power Factor	0 %	0 %	Reset

Parameter	Description
Mode	Allows selection of the following modes
	Bus:
	Generator:
	Mains:
Power Control Mode	Allows selection of the <i>Power Control Mode</i> when running in <i>Mains Parallel</i>
	<i>Mode.</i> This is also selectable by activation of a configured digital input or via the <i>Running Editor</i> .
Reactive Power	Allows selection of the Reactive Power Control Mode when running in
Control Mode	Mains Parallel Mode. This is also selectable by activation of a configured
	digital input or via the Running Editor.
Spinning Reserve	The power available over and above the load requirements on the bus. The
	load demand scheme will start further sets to ensure that this margin is
	maintained.
Spinning Capacity	The minimum power that will be available on the bus (this setting normally exceeds spinning reserve).
Minimum Load Level	The kW load level the generator starts to ramp from when its switchgear
	closes. It is also the kW load level when the generator's switchgear opens
	during ramping down and going off load.
Maximum Load Level	The maximum kW load level to be produced when running in <i>Mains</i>
	Parallel Mode.
Maximum var Level	The maximum kvar load level to be produced when running in <i>Mains</i>
	Parallel Mode.
Power Factor	The power factor the generator is to maintain when running in <i>Mains</i>
	Parallel Mode

Ramp Rates

ANOTE: These adjustable parameters do not change the module's configuration settings. These settings enable the user to change the values dynamically via SCADA or the module's internal PLC based on operating requirements.

Ramp Rates			
Ramp Up Rate	3.0 %	3.0	%
Ramp Down Rate	3.0 %	3.0	%
Power Ramp on Setpoint Change	50.0 %	50.	0 %
Reactive Power Ramp on Setpoint Change	50.0 %	50.	0 %

Parameter	Description
Ramp Up Rate	The rate at which the generator is ramped onto the load when not running
	in droop.
Ramp Down Rate	The rate at which the generator is ramped off the load when not running
	in droop.
Power Ramp on	When changing between <i>Power Control</i> modes or changing the set point,
Setpoint Change	the Ramp Rate defines how fast the output power changes in percentage
	points per second.
Reactive Power Ramp	When changing between <i>Reactive Power Control</i> modes or changing the
on Setpoint Change	set point, the Ramp Rate defines how fast the output power changes in
	percentage points per second.

4.9.8 DROOP (MULTI SET)

This section displays the module's Droop settings for frequency and voltage.

Droop		
Frequency Droop		
Gain 2 Stability 2 Ramp 0 Output Offset 0	20 % 20 % 0.1 % 0.00 %	20 % 20 % 0.1 % 0.00 %
Voltage Droop		
Gain 2 Stability 2 Ramp 0 Output Offset 0	20 % 20 % 0.1 % 0.00 %	20 % 20 % 0.1 % 0.00 %

Parameter	Description
Frequency Droop	The settings for the Gain (P), Stability (I) and Derivative (D) of the control loop used for the control of Frequency Droop.
Governor (kW)	
Gain (P)	
Stability (I)	
Derivative (D)	
Voltage Droop	The settings for the Gain (P), Stability (I) and Derivative (D) of the control loop used for the control of Voltage Droop.
Governor (kW)	
Gain (P)	
Stability (I)	
Derivative (D)	

4.9.9 DE-RATE

<u>Watts</u>

Watts		
De-Rate	80 %	
Current De-Rated Power %	80 %	
Configured Power Rating	500 kW	
Current De-Rated Power Rating	400 kW	

Parameter	Description
De-Rate	Select with the mouse and move the cursor to override the De- Rate % to the desired level.
	100% represents Full kw Load Rating. Reducing the % reduces
	the generator's kw capacity to limit the power produced when in
	Mains Parallel Mode, or when load sharing over the AMSC.
Current De-Rated Power %	The de-rated kw power in percent (%).
Configured Power Rating	The kW Rating of the generator, as configured in the Generator
	Rating section.
Current De-Rated Power Rating	The kw rating after the De-Rate

<u>Var</u>

ANOTE: The –*kvar Rating* is also derated by the *same De-Rate* % which is used to derate the +*kvar Rating*.

VAr	
De-Rate	92 %
Current De-Rated VAr %	92 %
Configured VAr Rating	375 kVAr
Current De-Rated VAr Rating	345 kVAr

Parameter	Description
De-Rate	Select with the mouse and move the cursor to override the De-
	Rate % to the desired level.
	100% represents Full kvar Rating. Reducing the % reduces the
	generator's kvar capacity to limit the kvar produced when in
	Mains Parallel Mode, or when load sharing over the AMSC.
Current De-Rated var %	The de-rated kvar power in percent (%).
Configured var Rating	The kvar Rating of the generator, as configured in the
	Generator Rating section.
Current De-Rated var Rating	The kvar rating after the De-Rate

4.10 ENGINE

This section displays the measurement of the *Engine* parameters. These measurements come from either the module's inputs or from the engine ECU/ECM. For further details on how to configure these items, refer to section 3.2 entitled *Application* for more information.

Coolant Temperature	Plant Battery
81 ℃, 178 °F	13.2 V DC
Oil Pressure	Charge Alternator
5.16Bar, 74.8 PSI, 516 kPa	28.2 V DC
Speed	Hours Run
1499 RPM	1821:33
Fuel Level	Number Of Starts
73 %	578

4.10.1 FUEL USE AND EFFICIENCY

This section displays the measurement of the *Fuel Use and Efficiency* parameters. These measurements come from either the module's inputs or from the engine ECU/ECM. For further details on how to configure these items, refer to section 3.11.5 entitled *Fuel Use and Efficiency* under the *Engine* section for more information.

Fuel Consumption		
Instantaneous 9.90 l/hr		Trip 10.26 <i>V</i> hr
Fuel Use		
Trip 1 litres		Accumulated 29978 litres
Fuel Efficiency		
Instantaneous 2.60 kWh/l	Trip 2.59 kWh/l	Accumulated 2.30 kWh/I
Run Time Until Empty		
	25:13 hh:mm	

4.11 FLEXIBLE SENSORS

This section displays the status and instrumentation measured by the module's analogue inputs and the functions they are configured for. For further details on how to configure these items, refer to section 3.4.2 entitled *Analogue Inputs* for more information.

Flexible Sensor A	
Not Used	
Flexible Sensor B	
NetHead	
Flexible Sensor C	
Not Used	
Hexible Sensor D	
Not Used	
Flexible Sensor E	
Not Used	
Flexible Sensor F	
Not Used	
Flexible Sensor G	
Not Used	

4.12 CONFIGURABLE CAN INSTRUMENTATION

This section displays the module's readings of the configured *CAN Instrumentation*. This is only available if the module is configured for *Configurable CAN Instrumentation*, the *Enhanced CANbus* option is enabled, and the message is available over the relevant configured CAN bus. For further details on how to configure these items, refer to section 3.15 entitled *Configurable CAN Instrumentation* for more information.

Conf	igurable CAN Instrumentation	
1	Engine Coolant Temp - ET1	21 °C
2	Engine Oil Pressure - EFL_P1	500 kPa
3	Engine Fuel Used - LFC	Bad Data
4	Engine Speed - EEC1	1500.000 RPM
5	Engine Hours - Hours	0.0 hr
6	Engine Fuel Pressure - EFL_P1	124 kPa
7	Engine Oil Tempreature - ET1	32.14723 °C
8	Engine Coolant Pressure - EFL_P1	0.62 kPa
9	Engine Inlet Temp - IC1	Bad Data
10	Engine Coolant Level - EFL_P1	100 %

4.13 ALARMS

This section displays the alarms that are currently active on the module.

For information regarding alarm severity, refer to section 5 entitled *Alarm Types* for more information.

<u>Alarms</u>

Shutdown Alarms Emergency Stop Oil Pressure Sensor Open Circuit Temp Sender Open Circuit Alarm	Alarms that are active on the unit are grouped based on their type. For example, the <i>Emergency</i> <i>Stop</i> alarm appears in the <i>Shutdown Alarms</i> list because it has generated a <i>Shutdown</i> alarm type.
Warning Alarms	

Reset Electrical Trip

NOTE: For further details on how this function is configured, refer to section 3.18.3 entitled *Reset Electrical Trip* for more information.

Reset Electrical Trip	
Reset Count	Time Period
0	05:00

Parameter	Description
Reset Count	The number of times any electrical trips has been reset whilst the generator is running to enable it to go back on load. The counter goes to zero upon the generator stopping.
Time Period	The time interval for the <i>Reset Count</i> . If the <i>Reset Count</i> limit is reached within configured <i>Time Period</i> , no more resets can occur until the generator has stopped.

4.14 ENGINE ALARMS

The *Engine Alarms* page is subdivided into smaller sections. Select the required section with the mouse.

Engine Alarms	
Current Engine Alarms	
Previous Engine Alarms	

4.14.1 CURRENT ENGINE ALARMS

This section displays the list of active *ECU Current DTCs* (Diagnostic Trouble Codes) which are being read from the engine's ECU. *ECU Current DTCs* are DM1 messages and are only read when the engine's ECU is awake (powered up). For information, refer to DSE publication: **057-004** *Electronic Engines and DSE Wiring* which is found on the DSE website: <u>www.deepseaelectronics.com</u>.

NOTE: In Stop Mode pressing the Wake ECU button will trigger the ECU Override which will remain powered 2 for two minutes

4.14.2 PREVIOUS ENGINE ALARMS

This section displays the list of active *ECU Previous DTCs* (Diagnostic Trouble Codes) which are being read from the engine's ECU. *ECU Previous DTCs* are DM2 messages and are only read when the engine's ECU is awake (powered up). For information, refer to DSE publication: **057-004** *Electronic Engines and DSE Wiring* which is found on the DSE website: www.deepseaelectronics.com.

4.15 STATUS

This section displays the status information about the module.

4.16 EVENT LOG

This section displays the events which are recorded with the module's event log along with the time, date, and engine hours in which they occurred. For further details on how what events are recorded, refer to section 3.3.5 entitled *Event Log* for more information.

#	Date	Time	Hours Run	Event	Details	^			
1	12/02/2019	11:00:26	1821:21	Start	Engine Started	≣			
2	12/02/2019	10:46:37	1821:21	Stop	Engine Stopped				
3	12/02/2019	10:46:01	1821:21	Start	Engine Started				
4	12/02/2019	10:45:56	1821:21	Warning	ECU Amber				
5	12/02/2019	10:41:31	1821:21	Warning	MSC Failure				
6	12/02/2019	10:38:08	1821:21	Stop	Engine Stopped				
7	12/02/2019	10:37:08	1821:21	Start	Engine Started				
8	12/02/2019	10:19:37	1821:21	Stop	Engine Stopped				
9	12/02/2019	10:19:15	1821:21	Start	Engine Started				
10	11/02/2019	16:40:25	1821:21	Stop	Engine Stopped				
11	11/02/2019	16:31:28	1821:12	Start	Engine Started				
12	11/02/2019	16:20:21	1821:12	Stop	Engine Stopped				
13	11/02/2019	16:14:34	1821:06	Start	Engine Started				
14	11/02/2019	15:49:13	1821:06	Stop	Engine Stopped				
15	11/02/2019	15:43:30	1821:00	Start	Engine Started				
16	11/02/2019	09:56:56	1821:00	Stop	Engine Stopped				
17	11/02/2019	09:02:56	1820:06	Start	Engine Started				
18	11/02/2019	08:53:26	1820:06	Warning	MSC Failure				
19	08/02/2019	14:48:53	1820:06	Stop	Engine Stopped				
20	08/02/2019	14:40:40	1819:57	Start	Engine Started				
21	08/02/2019	14:26:48	1819:57	Stop	Engine Stopped				
22	08/02/2019	13:03:46	1818:36	Start	Engine Started				
23	08/02/2019	12:03:59	1818:36	Stop	Engine Stopped				
24	08/02/2019	11:30:45	1818:03	Start	Engine Started				
25	08/02/2019	11:29:54	1818:03	Stop	Engine Stopped				
26	08/02/2019	11:27:29	1818:00	Start	Engine Started	-			
Expo	ort to Excel	Export to	CSV Expo	rt to PDF	Pr	int event log			
	Click to save the log to an Excel or csv file for use in an external spreadsheet								

4.17 ENHANCED CANBUS

This section displays the measurement of the *Engine* parameters. These measurements come from the engine ECU/ECM. For further details on how to configure engine ECU/ECM, refer to section 3.2 entitled *Application* for more information.

Engine Oil Temperature	Inlet Temperature		
80 °C, 176 °F	Temp. 1 Temp. 2 33 °C, 91 °F		
Exhaust Temperature			
	Coolant Pressure		
Temp. 1 Temp. 2	Press. 1 Press. 2		
Fuel Pressure			
	Turbo Pressure		
Press. 1 Press. 2 4.88Bar, 71 PSI, 488 kPa	Press. 1 Press. 2 0.228ar, 3 PSI, 22 kPa		

4.18 MAINTENANCE

The *Maintenance* section is subdivided into smaller sections. Select the required section with the mouse.

Maintenance
Recalibrate Transducers
Expansion Calibration
Hours Run and Number of Starts
Time
Accumulated Instrumentation
Fuel Use and Efficiency
Maintenance Alarm Reset
Electronic Engine Controls
Module PIN

4.18.1 RECALIBRATE TRANSDUCERS (A TO G)

This section allows the analogue sensor inputs of the module to be calibrated to remove inaccuracies caused by the tolerance of the sensor devices. While the engine is running, the instruments are calibrated, and reference needs to be made to a third-party accurate sensing device to ensure accurate recalibration.

4.18.2 EXPANSION CALIBRATION

This section allows the analogue sensor inputs of the DSE2130 and DSE2131 expansion modules to be calibrated to remove inaccuracies caused by the tolerance of the sensor devices. While the engine is running, the instruments are calibrated, and reference needs to be made to a third-party accurate sensing device to ensure accurate recalibration.

4.18.3 HOURS RUN AND NUMBER OF STARTS

This section allows the Hours Run and Number of Starts to be customised on the controller. Typically, this is used when fitting a new controller to an older engine so that the controller display matches the amount of work previously done by the system.

Hours Run			Type the value or click the up and
Hours Run:	19:22	* 10-22 *	down arrows to change the settings.
Number Of Starts			
No. of Starts:	9	\$ 9 Set	
Load Demand Run Hours			
Hours Run: 00:00	00:00	Set To Engine Hours	5

4.18.4 TIME

This section allows the date and time to be adjusted on the controller.

4.18.5 ACCUMULATED INSTRUMENTATION

This section allows the generators accumulated instrumentation and the Fault Ride Through Events counter to be adjusted on the controller.

kWh					(`	
	kWh:	30.6 kWh	\$ 30.6	Cat		Display o current va paramete	f the module's alue for the r.
kVAh							
	kVAh:	38.2 kVAh	* *	501		Type the click the arrows to	new value or up and down change the
kVArh						settings.	
	kVArh:	22.7 kVArh	22.7	Set	$\overline{\langle}$	Click Set to adjust the	
Fault Ride Thro	ugh					value	o the selected
	-						
	Events:	19 Events	÷ 19	Set			
Deest					(Click to re	eset all the
Keset		Reset all va	lues to zero			accumulated instrumentation counter to zero.	

4.18.6 FULE USE AND EFFICIENCY

This section allows the total fuel used value to be adjusted on the controller.

4.18.7 MAINTENANCE ALARM RESET

This section allows the module's three maintenance alarms to be reset and when the alarm is due to activate.

4.18.8 ELECTRONIC ENGINE CONTROLS

This section allows settings within the engine's ECU to be altered when supported.

DPF Regenera	ation				
DPF Auto Regen Inhibit			Click to start the DPF Regeneration Manual		
Governor Gair	n (ECM)				
Gain 5.0		-		5.0	Reset
Frequency Ad	just Offset				
Offset 0.0 %			0	0.0 %	Reset

Parameter	Description
DPF Auto Regen	= The ECU's DPF Auto Regeneration happens automatically.
Inhibit	☑ = The ECU's DPF Auto Regeneration is inhibited from activating.
Governor Gain	The setting for the Gain (P) of the ECU/ECM's control loop over the engine
(ECM)	speed.
Frequency Adjust	A positive/negative offset that is applied to the entire ECU/ECM's droop
Offset	setting as percentage its configured nominal speed.
	An Offset of -1% with a nominal speed of 1500 RPM would result in the entire
	ECU's droop curve being offset by 15 RPM.

4.18.9 MODULE PIN

CAUTION!: If the module PIN is lost or forgotten, it is no longer possible to access or make changes to the module!

This section allows the user to configure a PIN (Personal Identification Number) within the module. This PIN must be entered to access the modules *Main Front Panel Configuration Editor* or, when writing a configuration or changing a value in SCADA using the DSE Configuration Suite PC Software.

Module Access Passw	ord					
Password	÷ 0	÷ 0	÷ 0	÷ 0	Enter the PIN and	e desired confirmation
Confirmation	n 🛟 0	÷ 0	÷ 0	÷ 0		
Warning - car If the password is lost	re should be or forgotte	e taken whe n, it will not	n adjusting t be possibl	these contro e to access	bls. the module.	
		Set PIN			Click to s within the	set the PIN e module.

4.19 COMMUNICATIONS INFORMATION

This section displays the information about the configuration of the module's ethernet port. For further details on how to configure the module's ethernet port, refer to section 3.12.3 entitled *Ethernet* for more information.

IP address	MAC Address			
192 . 168 . 1 . 100	E8 : A4 : C1 : 2 : 8D : 7			
Subnet Mask	DNS			
255 . 255 . 255 . 0	8.8.8.8			
Host	MODBUS Preferred IP Address			
DSE Host	192 . 168 . 1 . 99			
Domain	MODBUS Connection Port			
DSE Module	502			
Gateway	DHCP			
192 . 168 . 1 . 1	Off			
	TCP Vendor			
	DSE Vender			

4.20 DATA LOG

This section displays and temporarily records the instruments configured within the module's *Data Logging* facility to the PC. The data which is temporarily recorded is only for the duration in which the *Data Log* section is viewed. For further details on how to configure these items, refer to section 3.3.6 entitled *Data Logging* for more information.

4.20.1 DATA LOG STATUS

This section displays the information module's *Data Logging* function. For further details on how to configure the module's Data Logging function, refer to section 3.3.6 entitled *Data Logging* for more information.

Internal Memory Capacity	Data Logging Status	
2048 kB	Logging	
Remaining Data Log Memory	Data Log Mode	
Space remaining in Internal memory: 2032 kB	Keep New	
Remaining Data Log Time	USB Drive Status	
7h 30m	Not Fitted	
Total Log Pages Available	Data Log Destination	
128	Internal	
Current Page Usage		
4.473 kB		

4.21 AVR

The *AVR* section is subdivided into smaller sections. Select the required section with the mouse.

AVR
Frequency, Voltages and Current
Diagnostics
Status
Control
Alarms

4.21.1 FREQUENCY, VOLTAGES AND CURRENT

ANOTE: The *Feedback Voltages* might not indicate the true *Generator Voltage* values. The *Feedback Voltage* instruments reading depend on the CAN AVR device being used and the way it is connected to the AC alternator.

The DSEA108 supports only single-phase voltage sensing connected as *Ph-N* or *Ph-Ph*. The DSEA109 supports single phase or three phase voltage sensing.

For further details, refer to DSE Publication: 057-281 DSEA108 Operator Manual or 057-295 DSEA109 Operator Manual available on our website: www.deepseaelectronics.com

Frequency				,
		50.1 Hz		
Feedback Voltag	ge			
	L1 - L2 209.4 V	L2 - L3 209.3 V	L3 - L1 209.2 V	
		Average 209.3 V		
Droop Current				
		0.00 A		
Excitation Volta	ge			
		12.9 V		
Auxiliary Voltag	e			
		173.7 V		

4.21.2 DIAGNOSTICS

External Control					
Potentiom +++	eter	Voltage 0.02 V			
Set Points					
Voltage 120.0 V Proportional 80.6	Droop 3.0 % Integral 9.7	UFRO Knee 42.7 Hz Derivative 50.0			
Excitation Output					
Off Load Duty Cycle 8.0 %	Maximum Duty Cycle 100.0 %				
Soft Start					
Ramp Start Point (% of set point) Ramp Rate (%/s) 27.0 % 30.0 %					

4.21.3 STATUS

Status	
Software Version	
	2.0.2
Configuration	
Active Configuration 0	Active Stability Configuration 1

4.21.4 CONTROL

NOTE: The Active Configuration Selection and the Active Stability Configuration Selection SCADA settings are only adjustable if they are enabled within the DSE CAN AVR's configuration. For further details, refer to DSE Publication: 057-283 DSEA108 Software Manual or 057-294 DSEA109 Software Manual available on our website: www.deepseaelectronics.com

Set Points			
Droop Proportional Integral Derivative	3.0 % 80.6 9.7 50.0	 0	3.0 % 80.6 9.7 50.0
Excitation Output			
Off Load Duty Cycle Maximum Duty Cycle	8.0 % 100.0 %		8.0 %
Soft Start			
Ramp Start Point (% of set point) Ramp Rate (%/s)	27.0 % 30.0 %		27.0 % 30.0 %
Configuration			
Active Configuration Active Stability Configuration	0 1		0 1

4.21.5 AVR ALARMS

A	VR Alarms
	Start-up failed trip

4.22 EXPANSION

The *Expansion* section is subdivided into smaller sections. Select the required section with the mouse.

Expansion						
2130 Input Modules						
2131 Input Modules						
2133 Input Modules						
2152 Output Modules						
2157 Relay Modules						
2548 Annunciator Modules						
Battery Chargers						

The selected section displays the status of the expansion module's inputs/outputs/LEDs etc and the functions they are configured for. For further details on how to configure these items, refer to section 3.17 entitled *Expansion* in the *Edit Config* section for more information. An example status of a DSE2157 Output Expansion is shown below.

5 ALARM TYPES

The protection included with the DSE control modules provides increasing levels of notification, depending upon the severity of the situation:

Alarm Type	Description
Indication	No audible alarm or common warning signal occurs.
	Indication alarms are only used to illuminate indicators, activate
	outputs, or checked by the module's internal PLC.
Warning	Audible alarm and common alarm signal is generated. The set
	continues to run.
	Warning alarms are used to draw the operator's attention to a minor
	issue or to a problem that may escalate to an Electrical Trip or
	Shutdown Alarm if left untreated.
Electrical Trip	Audible alarm and common alarm signal is generated. The set is taken
	off load and the cooling timer begins, after which the set is stopped.
	<i>Electrical Trip alarms</i> are series issues that require the set to be taken
	off load. As the name implies, this is often electrical faults that occur
	'after' the load switch. The set is allowed to cool before stopping.
Shutdown	Audible alarm and common alarm signal is generated. The set is taken
	off load and immediately stopped.
	Shutdown alarms are serious issues that demand immediate stopping
	of the generator. For instance, Emergency Stop or Overspeed alarms
	require immediate shutdown.

Alarm Arming

6 ALARM ARMING

The protections on the DSE module are active during their configured *Alarm Arming* setting. The table below shows the timing segment for the different *Alarm Arming* options with regards to the generator status.

Timing	Stoppod	Start	ECU Wake Up	Proboat	Cranking	Safety on	Smoke	Smoke Limiting	Warming	Gen	Gen On	Cooling	Cooling
Never	otopped	Delay	Delay	Treneat	Granking	Delay	Limang		op	Available	Load	Cooling	Intere
Always													
When Stationary													
From Starting													
Over frequency / Overspeed Overshoot													
From Safety On													
From Breaker Closed													
From Mains Parallel													

6.1 NEVER

The protection is never active on the controller. This is used to disable the protection.

6.2 ALWAYS

The protection is always active on the controller. This is used to constantly monitor statuses such as a fuel level switch irrespective of the engine running state.

6.3 WHEN STATIONARY

The protection is active from the moment the engine stops until the beginning of engine cranking.

6.4 FROM STARTING

The protection is active from the beginning of engine cranking, until the engine stops.

6.5 OVERSHOOT

Active during the *Safety Delay* timer, this allows for a temporary raise of the overspeed/over frequency trip points during start-up.

Protection Level	Over Frequency Trip Level	Over Speed Trip Level
Immediate Shutdown	Over Frequency + Overshoot	Over Speed + Overshoot %
	%	
Delayed Shutdown	Over Frequency	Over Speed
(Overspeed Overshoot Delay)		-

Example

57 Hz Over Frequency setting, 10% Overspeed Overshoot

During Safety Delay a generator frequency above (57 Hz x 1.1) = 62.7 Hz results in an immediate shutdown without delay.

After Safety delay, a generator frequency above 57 Hz for the period of the Generator Transient Delay results in a shutdown

6.6 FROM SAFETY ON

The protection is active when the set is running at nominal speed, until the engine stops.

6.7 FROM BREAKER CLOSED

The protection is active when the set is running with its switchgear closed.

6.8 FROM MAINS PARALLEL

The protection is active when the set is running with its switchgear closed and a digital input configured for *Mains Parallel Mode* is active.

Page is Left Intentionally Blank

Page is Left Intentionally Blank